A Mathematical Justification for the Herman-Kluk Propagator

被引:0
|
作者
Torben Swart
Vidian Rousse
机构
[1] Freie Universität Berlin,
[2] Institut für Mathematik,undefined
来源
关键词
Coherent State; Canonical Transformation; Semiclassical Limit; Fourier Integral Operator; Zeroth Order Term;
D O I
暂无
中图分类号
学科分类号
摘要
A class of Fourier Integral Operators which converge to the unitary group of the Schrödinger equation in the semiclassical limit ε → 0 in the uniform operator norm is constructed. The convergence allows for an error bound of order O(ε), which can be improved to arbitrary order in ε upon the introduction of corrections in the symbol. On the Ehrenfest-timescale, the result holds with a slightly weaker error bound. In the chemical literature the approximation is known as the Herman-Kluk propagator.
引用
收藏
相关论文
共 50 条
  • [1] A Mathematical Justification for the Herman-Kluk Propagator
    Swart, Torben
    Rousse, Vidian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (02) : 725 - 750
  • [2] On the derivation of the Herman-Kluk propagator
    Deshpande, Sarin A.
    Ezra, Gregory S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 5067 - 5078
  • [3] Discretising the Herman-Kluk propagator
    Lasser, Caroline
    Sattlegger, David
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 119 - 157
  • [4] Semiclassical corrections to the Herman-Kluk propagator
    Hochman, Gili
    Kay, Kenneth G.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [5] Sampling strategies for the Herman-Kluk propagator of the wavefunction
    Kroeninger, Fabian
    Lasser, Caroline
    Vanicek, Jiri J. L.
    FRONTIERS IN PHYSICS, 2023, 11
  • [6] Improving the efficiency of the Herman-Kluk propagator by time integration
    Elran, Y
    Kay, KG
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08): : 3653 - 3659
  • [7] Real time path integrals using the Herman-Kluk propagator
    Burant, JC
    Batista, VS
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (07): : 2748 - 2756
  • [8] ON THE HERMAN-KLUK SEMICLASSICAL APPROXIMATION
    Robert, Didier
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (10) : 1123 - 1145
  • [9] A log-derivative formulation of the prefactor for the semiclassical Herman-Kluk propagator
    Gelabert, R
    Giménez, X
    Thoss, M
    Wang, HB
    Miller, WH
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (45): : 10321 - 10327
  • [10] Herman-Kluk propagator is free from zero-point energy leakage
    Buchholz, Max
    Fallacara, Erika
    Gottwald, Fabian
    Ceotto, Michele
    Grossmann, Frank
    Ivanov, Sergei D.
    CHEMICAL PHYSICS, 2018, 515 : 231 - 235