A Mathematical Justification for the Herman-Kluk Propagator

被引:47
|
作者
Swart, Torben [1 ]
Rousse, Vidian [1 ]
机构
[1] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
关键词
FOURIER INTEGRAL-OPERATORS; FUNDAMENTAL SOLUTION; APPROXIMATION; DYNAMICS;
D O I
10.1007/s00220-008-0681-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of Fourier Integral Operators which converge to the unitary group of the Schrodinger equation in the semiclassical limit epsilon -> 0 in the uniform operator norm is constructed. The convergence allows for an error bound of order O(epsilon), which can be improved to arbitrary order in epsilon upon the introduction of corrections in the symbol. On the Ehrenfest-timescale, the result holds with a slightly weaker error bound. In the chemical literature the approximation is known as the Herman-Kluk propagator.
引用
收藏
页码:725 / 750
页数:26
相关论文
共 50 条
  • [1] A Mathematical Justification for the Herman-Kluk Propagator
    Torben Swart
    Vidian Rousse
    Communications in Mathematical Physics, 2009, 286
  • [2] On the derivation of the Herman-Kluk propagator
    Deshpande, Sarin A.
    Ezra, Gregory S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 5067 - 5078
  • [3] Discretising the Herman-Kluk propagator
    Lasser, Caroline
    Sattlegger, David
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 119 - 157
  • [4] Semiclassical corrections to the Herman-Kluk propagator
    Hochman, Gili
    Kay, Kenneth G.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [5] Sampling strategies for the Herman-Kluk propagator of the wavefunction
    Kroeninger, Fabian
    Lasser, Caroline
    Vanicek, Jiri J. L.
    FRONTIERS IN PHYSICS, 2023, 11
  • [6] Improving the efficiency of the Herman-Kluk propagator by time integration
    Elran, Y
    Kay, KG
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08): : 3653 - 3659
  • [7] Real time path integrals using the Herman-Kluk propagator
    Burant, JC
    Batista, VS
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (07): : 2748 - 2756
  • [8] ON THE HERMAN-KLUK SEMICLASSICAL APPROXIMATION
    Robert, Didier
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (10) : 1123 - 1145
  • [9] A log-derivative formulation of the prefactor for the semiclassical Herman-Kluk propagator
    Gelabert, R
    Giménez, X
    Thoss, M
    Wang, HB
    Miller, WH
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (45): : 10321 - 10327
  • [10] Herman-Kluk propagator is free from zero-point energy leakage
    Buchholz, Max
    Fallacara, Erika
    Gottwald, Fabian
    Ceotto, Michele
    Grossmann, Frank
    Ivanov, Sergei D.
    CHEMICAL PHYSICS, 2018, 515 : 231 - 235