Sampling strategies for the Herman-Kluk propagator of the wavefunction

被引:1
|
作者
Kroeninger, Fabian [1 ]
Lasser, Caroline [2 ]
Vanicek, Jiri J. L. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingenierie Chim, Lab Theoret Phys Chem, Lausanne, Switzerland
[2] Tech Univ Munich, Zentrum Math, Munich, Germany
基金
欧洲研究理事会;
关键词
quantum propagator; time-dependent semiclassical approximation; highly oscillatory integral; statistical convergence of Monte Carlo methods; mesh-free discretization; INITIAL-VALUE REPRESENTATION; MOLECULAR-DYNAMICS; SEMICLASSICAL DYNAMICS; QUANTUM DYNAMICS; PATH-INTEGRATION; DERIVATION; PHOTODISSOCIATION; APPROXIMATION; WAVEPACKETS; OPERATORS;
D O I
10.3389/fphy.2023.1106324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When the semiclassical Herman-Kluk propagator is used for evaluating quantum-mechanical observables or time-correlation functions, the initial conditions for the guiding trajectories are typically sampled from the Husimi density. Here, we employ this propagator to evolve the wavefunction itself. We investigate two grid-free strategies for the initial sampling of the Herman-Kluk propagator applied to the wavefunction and validate the resulting time-dependent wavefunctions evolved in harmonic and anharmonic potentials. In particular, we consider Monte Carlo quadratures based either on the initial Husimi density or on its square root as possible and most natural sampling densities. We prove analytical convergence error estimates and validate them with numerical experiments on the harmonic oscillator and on a series of Morse potentials with increasing anharmonicity. In all cases, sampling from the square root of Husimi density leads to faster convergence of the wavefunction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On the derivation of the Herman-Kluk propagator
    Deshpande, Sarin A.
    Ezra, Gregory S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 5067 - 5078
  • [2] Discretising the Herman-Kluk propagator
    Lasser, Caroline
    Sattlegger, David
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 119 - 157
  • [3] Semiclassical corrections to the Herman-Kluk propagator
    Hochman, Gili
    Kay, Kenneth G.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [4] A Mathematical Justification for the Herman-Kluk Propagator
    Torben Swart
    Vidian Rousse
    Communications in Mathematical Physics, 2009, 286
  • [5] A Mathematical Justification for the Herman-Kluk Propagator
    Swart, Torben
    Rousse, Vidian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (02) : 725 - 750
  • [6] Improving the efficiency of the Herman-Kluk propagator by time integration
    Elran, Y
    Kay, KG
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08): : 3653 - 3659
  • [7] Real time path integrals using the Herman-Kluk propagator
    Burant, JC
    Batista, VS
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (07): : 2748 - 2756
  • [8] ON THE HERMAN-KLUK SEMICLASSICAL APPROXIMATION
    Robert, Didier
    REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (10) : 1123 - 1145
  • [9] A log-derivative formulation of the prefactor for the semiclassical Herman-Kluk propagator
    Gelabert, R
    Giménez, X
    Thoss, M
    Wang, HB
    Miller, WH
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (45): : 10321 - 10327
  • [10] Herman-Kluk propagator is free from zero-point energy leakage
    Buchholz, Max
    Fallacara, Erika
    Gottwald, Fabian
    Ceotto, Michele
    Grossmann, Frank
    Ivanov, Sergei D.
    CHEMICAL PHYSICS, 2018, 515 : 231 - 235