Sampling strategies for the Herman-Kluk propagator of the wavefunction

被引:1
|
作者
Kroeninger, Fabian [1 ]
Lasser, Caroline [2 ]
Vanicek, Jiri J. L. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingenierie Chim, Lab Theoret Phys Chem, Lausanne, Switzerland
[2] Tech Univ Munich, Zentrum Math, Munich, Germany
基金
欧洲研究理事会;
关键词
quantum propagator; time-dependent semiclassical approximation; highly oscillatory integral; statistical convergence of Monte Carlo methods; mesh-free discretization; INITIAL-VALUE REPRESENTATION; MOLECULAR-DYNAMICS; SEMICLASSICAL DYNAMICS; QUANTUM DYNAMICS; PATH-INTEGRATION; DERIVATION; PHOTODISSOCIATION; APPROXIMATION; WAVEPACKETS; OPERATORS;
D O I
10.3389/fphy.2023.1106324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When the semiclassical Herman-Kluk propagator is used for evaluating quantum-mechanical observables or time-correlation functions, the initial conditions for the guiding trajectories are typically sampled from the Husimi density. Here, we employ this propagator to evolve the wavefunction itself. We investigate two grid-free strategies for the initial sampling of the Herman-Kluk propagator applied to the wavefunction and validate the resulting time-dependent wavefunctions evolved in harmonic and anharmonic potentials. In particular, we consider Monte Carlo quadratures based either on the initial Husimi density or on its square root as possible and most natural sampling densities. We prove analytical convergence error estimates and validate them with numerical experiments on the harmonic oscillator and on a series of Morse potentials with increasing anharmonicity. In all cases, sampling from the square root of Husimi density leads to faster convergence of the wavefunction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] CHEMOMETRICS - SAMPLING STRATEGIES
    KATEMAN, G
    TOPICS IN CURRENT CHEMISTRY-SERIES, 1987, 141 : 43 - 62
  • [42] Limited sampling strategies
    David, O
    Johnston, A
    CLINICAL PHARMACOKINETICS, 2000, 39 (04) : 311 - 312
  • [43] Optimising sampling strategies for emergency response: Vegetation sampling
    Khomutinin, Yu.
    Fesenko, S.
    Levchuk, S.
    Holiaka, D.
    Kashparov, V.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2021, 233
  • [44] Optimising sampling strategies for emergency response: Soil sampling
    Khomutinin, Yu
    Fesenko, S.
    Levchuk, S.
    Zhebrovska, K.
    Kashparov, V
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2020, 222 (222)
  • [45] ON CLASSES OF UNBIASED SAMPLING STRATEGIES
    Bhushan, Shashi
    Katara, Shubhra
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2010, 3 (02): : 93 - 101
  • [46] Adaptive Sampling Strategies for Quickselect
    Martinez, Conrado
    Panario, Daniel
    Viola, Alfredo
    ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (03)
  • [47] Sampling strategies in forest soils
    Fons, J
    Sauras, T
    Romanya, J
    Vallejo, VR
    ANNALES DES SCIENCES FORESTIERES, 1997, 54 (05): : 493 - 499
  • [48] Practical Field Sampling Strategies
    Balsamo, James J., Jr.
    Coleman, Nancy Pees
    Noonan, Gary P.
    Powitz, Robert W.
    Radke, Vincent J.
    Treser, Charles D.
    JOURNAL OF ENVIRONMENTAL HEALTH, 2023, 85 (08) : 40 - 41
  • [49] SAMPLING STRATEGIES FOR LINKAGE STUDIES
    GOLDIN, LR
    MARTINEZ, MM
    GERSHON, ES
    EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, 1991, 240 (03) : 182 - 187
  • [50] Optimal sampling strategies in quicksort
    Martínez, C
    Roura, S
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1998, 1443 : 327 - 338