ON THE HERMAN-KLUK SEMICLASSICAL APPROXIMATION

被引:23
|
作者
Robert, Didier [1 ]
机构
[1] Univ Nantes, Dept Math, Lab Jean Leray, CNRS,UMR 6629, F-44322 Nantes 03, France
关键词
Coherent states; time dependent Schrodinger equations; Semiclassical Fourier-Integral Operator; Ehrenfest time; FOURIER INTEGRAL-OPERATORS; PROPAGATION; DYNAMICS;
D O I
10.1142/S0129055X1000417X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a subquadratic symbol H on R-d X R-d = T*(R-d), the quantum propagator of the time dependent Schrodinger equation ih partial derivative psi/partial derivative t = (H) over cap psi is a Semiclassical Fourier-Integral Operator when (H) over cap = H(x, hD(x)) (h-Weyl quantization of H). Its Schwartz kernel is described by a quadratic phase and an amplitude. At every time t, when h is small, it is "essentially supported" in a neighborhood of the graph of the classical flow generated by H, with a full uniform asymptotic expansion in h for the amplitude. In this paper, our goal is to revisit this well-known and fundamental result with emphasis on the flexibility for the choice of a quadratic complex phase function and on global L-2 estimates when h is small and time t is large. One of the simplest choice of the phase is known in chemical physics as Herman-Kluk formula. Moreover, we prove that the semiclassical expansion for the propagator is valid for broken vertical bar t broken vertical bar << 1/4 delta broken vertical bar log h broken vertical bar where delta > 0 is a stability parameter for the classical system.
引用
收藏
页码:1123 / 1145
页数:23
相关论文
共 50 条
  • [1] The Herman-Kluk approximation: Derivation and semiclassical corrections
    Kay, KG
    CHEMICAL PHYSICS, 2006, 322 (1-2) : 3 - 12
  • [2] Semiclassical corrections to the Herman-Kluk propagator
    Hochman, Gili
    Kay, Kenneth G.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [3] Herman-Kluk semiclassical dynamics of molecular rotations in laser fields
    Saha, Rajdeep
    Ovchinnikov, M.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (06):
  • [4] A log-derivative formulation of the prefactor for the semiclassical Herman-Kluk propagator
    Gelabert, R
    Giménez, X
    Thoss, M
    Wang, HB
    Miller, WH
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (45): : 10321 - 10327
  • [5] On the derivation of the Herman-Kluk propagator
    Deshpande, Sarin A.
    Ezra, Gregory S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 5067 - 5078
  • [6] Discretising the Herman-Kluk propagator
    Lasser, Caroline
    Sattlegger, David
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 119 - 157
  • [7] A Mathematical Justification for the Herman-Kluk Propagator
    Torben Swart
    Vidian Rousse
    Communications in Mathematical Physics, 2009, 286
  • [8] A Mathematical Justification for the Herman-Kluk Propagator
    Swart, Torben
    Rousse, Vidian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (02) : 725 - 750
  • [9] Dynamics of interacting bosons using the Herman-Kluk semiclassical initial value representation
    Ray, Shouryya
    Ostmann, Paula
    Simon, Lena
    Grossmann, Frank
    Strunz, Walter T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (16)
  • [10] An evaluation of the semiclassical Herman-Kluk (HK) propagator for molecule-surface reactive scattering
    McCormack, DA
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (02): : 992 - 1001