Herman-Kluk propagator is free from zero-point energy leakage

被引:29
|
作者
Buchholz, Max [1 ]
Fallacara, Erika [1 ]
Gottwald, Fabian [2 ]
Ceotto, Michele [1 ]
Grossmann, Frank [3 ]
Ivanov, Sergei D. [2 ]
机构
[1] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy
[2] Rostock Univ, Inst Phys, Albert Einstein Str 23-24, D-18059 Rostock, Germany
[3] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
基金
欧洲研究理事会;
关键词
INITIAL-VALUE REPRESENTATION; THERMAL RATE CONSTANTS; CLASSICAL TRAJECTORY SIMULATIONS; BACKWARD SEMICLASSICAL DYNAMICS; VIBRATIONAL-ENERGY; QUANTUM-SYSTEMS; CONDENSED-PHASE; MATLAB PACKAGE; ATOM TRANSFER; MECHANICS;
D O I
10.1016/j.chemphys.2018.06.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quasiclassical techniques constitute a promising route to approximate quantum dynamics based on classical trajectories starting from a quantum-mechanically correct distribution. One of their main drawbacks is the so-called zero-point energy (ZPE) leakage, that is artificial redistribution of energy from the modes with high frequency and thus high ZPE to those with low frequency and ZPE due to classical equipartition. Here, we show that the elaborate semiclassical formalism based on the Herman-Kluk propagator is free from the ZPE leakage despite utilizing purely classical propagation. We demonstrate this with example applications for two- and three-dimensional anharmonically coupled oscillators. This finding opens the road to correct dynamical simulations of systems with a multitude of degrees of freedom that cannot be treated fully quantum-mechanically due to the exponential increase of the numerical effort.
引用
收藏
页码:231 / 235
页数:5
相关论文
共 50 条
  • [1] On the derivation of the Herman-Kluk propagator
    Deshpande, Sarin A.
    Ezra, Gregory S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 5067 - 5078
  • [2] Discretising the Herman-Kluk propagator
    Lasser, Caroline
    Sattlegger, David
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 119 - 157
  • [3] Semiclassical corrections to the Herman-Kluk propagator
    Hochman, Gili
    Kay, Kenneth G.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [4] A Mathematical Justification for the Herman-Kluk Propagator
    Torben Swart
    Vidian Rousse
    Communications in Mathematical Physics, 2009, 286
  • [5] A Mathematical Justification for the Herman-Kluk Propagator
    Swart, Torben
    Rousse, Vidian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (02) : 725 - 750
  • [6] Sampling strategies for the Herman-Kluk propagator of the wavefunction
    Kroeninger, Fabian
    Lasser, Caroline
    Vanicek, Jiri J. L.
    FRONTIERS IN PHYSICS, 2023, 11
  • [7] Improving the efficiency of the Herman-Kluk propagator by time integration
    Elran, Y
    Kay, KG
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08): : 3653 - 3659
  • [8] Real time path integrals using the Herman-Kluk propagator
    Burant, JC
    Batista, VS
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (07): : 2748 - 2756
  • [9] A log-derivative formulation of the prefactor for the semiclassical Herman-Kluk propagator
    Gelabert, R
    Giménez, X
    Thoss, M
    Wang, HB
    Miller, WH
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (45): : 10321 - 10327
  • [10] An evaluation of the semiclassical Herman-Kluk (HK) propagator for molecule-surface reactive scattering
    McCormack, DA
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (02): : 992 - 1001