A Mathematical Justification for the Herman-Kluk Propagator

被引:0
|
作者
Torben Swart
Vidian Rousse
机构
[1] Freie Universität Berlin,
[2] Institut für Mathematik,undefined
来源
关键词
Coherent State; Canonical Transformation; Semiclassical Limit; Fourier Integral Operator; Zeroth Order Term;
D O I
暂无
中图分类号
学科分类号
摘要
A class of Fourier Integral Operators which converge to the unitary group of the Schrödinger equation in the semiclassical limit ε → 0 in the uniform operator norm is constructed. The convergence allows for an error bound of order O(ε), which can be improved to arbitrary order in ε upon the introduction of corrections in the symbol. On the Ehrenfest-timescale, the result holds with a slightly weaker error bound. In the chemical literature the approximation is known as the Herman-Kluk propagator.
引用
收藏
相关论文
共 50 条
  • [31] The justification of mathematical statements - Discussion
    Jones, C
    Arthan, RD
    Swinnerton-Dyer, P
    Shah, N
    Davies, EB
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 363 (1835): : 2445 - 2447
  • [32] Computers, Justification, and Mathematical Knowledge
    Konstantine Arkoudas
    Selmer Bringsjord
    Minds and Machines, 2007, 17 : 185 - 202
  • [33] Computers, justification, and mathematical knowledge
    Arkoudas, Konstantine
    Bringsjord, Selmer
    MINDS AND MACHINES, 2007, 17 (02) : 185 - 202
  • [34] Euclidean diagrams and mathematical justification
    Dal Magro, Tamires
    DISPUTATIO-PHILOSOPHICAL RESEARCH BULLETIN, 2020, 9 (14): : 73 - 102
  • [35] A framework for classifying mathematical justification tasks
    Chua, Boon Liang
    PROCEEDINGS OF THE TENTH CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME10), 2017, : 115 - 122
  • [37] Mathematical justification of the apparition of the electromagnetic coupling
    Somsak Orankitjaroen
    Christian Licht
    Thibaut Weller
    Advances in Difference Equations, 2019
  • [38] On the mathematical justification of experimental and computer physics
    Maslov, V. P.
    MATHEMATICAL NOTES, 2012, 92 (3-4) : 577 - 579
  • [39] Mathematical justification for RBF-MFS
    Li, JC
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (10) : 897 - 901
  • [40] MATHEMATICAL JUSTIFICATION OF A GENERALIZED EQUILIBRIUM PROBLEM
    Castellani, Marco
    Giuli, Massimiliano
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (03): : 421 - 427