Weak Commutativity in Idempotent Semirings

被引:0
|
作者
F. Pastijn
机构
[1] Department of Mathematics,
[2] Statistics and Computer Science,undefined
[3] Marquette University,undefined
[4] P.O. Box 1881,undefined
[5] Milwaukee,undefined
[6] WI 53201-1881,undefined
来源
Semigroup Forum | 2006年 / 72卷
关键词
Distributive Lattice; Additive Reduct; Subdirect Product; Structural Relevance; Regular Band;
D O I
暂无
中图分类号
学科分类号
摘要
Let U be the variety of idempotent semirings satisfying xy + yx = yx + xy. We give a description of the lattice L(U) of subvarieties of U: L(U) happens to be a 662-element distributive lattice which is isomorphic to a subdirect product of the lattices L(S+ l) and L(S. l), where L(S+ l) [L(S. l)] denotes the variety of all idempotent semirings whose additive [multiplicative] reduct is a semilattice. In particular, U = L(S+ l) ⋁ L(S. l). Every subvariety of U is finitely generated and finitely based. If S ∈ U, then both the additive reduct and the multiplicative reduct of S are regular bands. The structural relevance of the least U-congruence is investigated.
引用
收藏
页码:283 / 311
页数:28
相关论文
共 50 条
  • [41] D-subvarieties of the variety of idempotent semirings
    Zhao, XZ
    Guo, YQ
    Shum, KP
    ALGEBRA COLLOQUIUM, 2002, 9 (01) : 15 - 28
  • [42] Derivations of some classes of additively idempotent semirings
    Vladeva, Dimitrinka Ivanova
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3244 - 3265
  • [43] THE ZELEZNIKOW PROBLEM ON A CLASS OF ADDITIVELY IDEMPOTENT SEMIRINGS
    Shao, Yong
    Crvenkovic, Sinisa
    Mitrovic, Melanija
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 95 (03) : 404 - 420
  • [44] Completely Prime Ideals in Multiplicatively Idempotent Semirings
    E. M. Vechtomov
    A. A. Petrov
    Mathematical Notes, 2022, 111 : 515 - 524
  • [45] Completely Prime Ideals in Multiplicatively Idempotent Semirings
    Vechtomov, E. M.
    Petrov, A. A.
    MATHEMATICAL NOTES, 2022, 111 (3-4) : 515 - 524
  • [46] Coequalizers and Tensor Products for Continuous Idempotent Semirings
    Hopkins, Mark
    Leiss, Hans
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2018, 11194 : 37 - 52
  • [47] *-Continuous Idempotent Left Semirings and Their Ideal Completion
    Furusawa, Hitoshi
    Sanda, Fumiya
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, PROCEEDINGS, 2009, 5827 : 119 - 133
  • [48] Congruence-simple multiplicatively idempotent semirings
    Tomáš Kepka
    Miroslav Korbelář
    Günter Landsmann
    Algebra universalis, 2023, 84
  • [49] On semimodules over commutative, additively idempotent semirings
    Sokratova, O
    SEMIGROUP FORUM, 2002, 64 (01) : 1 - 11
  • [50] On Semimodules over Commutative Additively Idempotent Semirings
    Sokratova O.
    Semigroup Forum, 2001, 64 (1) : 1 - 11