Coequalizers and Tensor Products for Continuous Idempotent Semirings

被引:3
|
作者
Hopkins, Mark [1 ]
Leiss, Hans [2 ]
机构
[1] UW Milwaukee, Milwaukee, WI 53211 USA
[2] Ludwig Maximilians Univ Munchen, Ctr Informat & Sprachverarbeitung, Oettingenstr 67, D-80539 Munich, Germany
关键词
KLEENE ALGEBRAS;
D O I
10.1007/978-3-030-02149-8_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide constructions of coproducts, free extensions, coequalizers and tensor products for classes of idempotent semirings in which certain subsets have least upper bounds and the operations are sup-continuous. Among these classes are the *-continuous Kleene algebras, the mu-continuous Chomsky-algebras, and the unital quantales.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [1] *-Continuous Idempotent Left Semirings and Their Ideal Completion
    Furusawa, Hitoshi
    Sanda, Fumiya
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, PROCEEDINGS, 2009, 5827 : 119 - 133
  • [2] Idempotent Triangular Matrices over Additively Idempotent Semirings: Decompositions into Products of Semicentral Idempotents
    Vladeva, Dimitrinka
    AXIOMS, 2025, 14 (02)
  • [3] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [4] A class of idempotent semirings
    Sen, MK
    Guo, YQ
    Shum, KP
    SEMIGROUP FORUM, 2000, 60 (03) : 351 - 367
  • [5] FULLY IDEMPOTENT SEMIRINGS
    AHSAN, J
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (06) : 185 - 188
  • [6] MULTIPLICATIVELY IDEMPOTENT SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    Svrcek, Filip
    MATHEMATICA BOHEMICA, 2015, 140 (01): : 35 - 42
  • [7] A Note on Idempotent Semirings
    Durcheva, Mariana
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [8] A class of idempotent semirings
    Sen M.K.
    Guo Y.Q.
    Shum K.P.
    Semigroup Forum, 2000, 60 (3) : 351 - 367
  • [9] ℒ-subvarieties of the variety of idempotent semirings
    Xianzhong Z.
    Shum K.P.
    Guo Y.Q.
    algebra universalis, 2001, 46 (1) : 75 - 96
  • [10] Weak commutativity in idempotent semirings
    Pastijn, F
    SEMIGROUP FORUM, 2006, 72 (02) : 283 - 311