*-Continuous Idempotent Left Semirings and Their Ideal Completion

被引:0
|
作者
Furusawa, Hitoshi [1 ]
Sanda, Fumiya [1 ]
机构
[1] Kagoshima Univ, Dept Math & Comp Sci, Kagoshima 890, Japan
关键词
KLEENE ALGEBRA;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce two notions of continuity for idempotent left semirings, which are called *-continuity and D-continuity. Also, for a *-continuous idempotent left semiring, we introduce a notion of *-ideals. Then, we show that the set of *-ideals of a *-continuous idempotent left semiring forms a D-continuous idempotent left serniring and the construction satisfies a universal property.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 50 条
  • [1] Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
    E. M. Vechtomov
    A. A. Petrov
    Mathematical Notes, 2022, 112 : 382 - 387
  • [2] Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
    Vechtomov, E. M.
    Petrov, A. A.
    MATHEMATICAL NOTES, 2022, 112 (3-4) : 382 - 387
  • [3] Coequalizers and Tensor Products for Continuous Idempotent Semirings
    Hopkins, Mark
    Leiss, Hans
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2018, 11194 : 37 - 52
  • [4] Multirelational representation theorems for complete idempotent left semirings
    Furusawa, Hitoshi
    Nishizawa, Koki
    JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING, 2015, 84 (03) : 426 - 439
  • [5] Relational and Multirelational Representation Theorems for Complete Idempotent Left Semirings
    Furusawa, Hitoshi
    Nishizawa, Koki
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2011, 6663 : 148 - 163
  • [6] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [7] A class of idempotent semirings
    Sen, MK
    Guo, YQ
    Shum, KP
    SEMIGROUP FORUM, 2000, 60 (03) : 351 - 367
  • [8] FULLY IDEMPOTENT SEMIRINGS
    AHSAN, J
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (06) : 185 - 188
  • [9] MULTIPLICATIVELY IDEMPOTENT SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    Svrcek, Filip
    MATHEMATICA BOHEMICA, 2015, 140 (01): : 35 - 42
  • [10] A Note on Idempotent Semirings
    Durcheva, Mariana
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789