MULTIPLICATIVELY IDEMPOTENT SEMIRINGS

被引:1
|
作者
Chajda, Ivan [1 ]
Laenger, Helmut [2 ]
Svrcek, Filip [1 ]
机构
[1] Palacky Univ, Dept Algebra & Geometry, Fac Sci, 17 Listopadu 12, Olomouc 77146, Czech Republic
[2] Vienna Univ Technol, Fac Math & Geoinformat, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
来源
MATHEMATICA BOHEMICA | 2015年 / 140卷 / 01期
基金
奥地利科学基金会;
关键词
semiring; commutative semiring; multiplicatively idempotent semiring; semiring of characteristic 2; simple semiring; unitary Boolean ring; bounded distributive lattice;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Semirings are modifications of unitary rings where the additive reduct does not form a group in general, but only a monoid. We characterize multiplicatively idempotent semirings and Boolean rings as semirings satisfying particular identities. Further, we work with varieties of enriched semirings. We show that the variety of enriched multiplicatively idempotent semirings differs from the join of the variety of enriched unitary Boolean rings and the variety of enriched bounded distributive lattices. We get a characterization of this join.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 50 条
  • [1] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [2] Multiplicatively Idempotent Semirings with Annihilator Condition
    E. M. Vechtomov
    A. A. Petrov
    Russian Mathematics, 2023, 67 : 23 - 31
  • [3] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [4] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [5] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2017, 94 : 610 - 617
  • [6] Congruence-simple multiplicatively idempotent semirings
    Tomáš Kepka
    Miroslav Korbelář
    Günter Landsmann
    Algebra universalis, 2023, 84
  • [7] The variety of commutative additively and multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2018, 96 : 409 - 415
  • [8] Subdirectly irreducible commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Algebra universalis, 2016, 76 : 327 - 337
  • [9] The variety of commutative additively and multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2018, 96 (02) : 409 - 415
  • [10] Congruence-simple multiplicatively idempotent semirings
    Kepka, Tomas
    Korbelar, Miroslav
    Landsmann, Guenter
    ALGEBRA UNIVERSALIS, 2023, 84 (02)