MULTIPLICATIVELY IDEMPOTENT SEMIRINGS

被引:1
|
作者
Chajda, Ivan [1 ]
Laenger, Helmut [2 ]
Svrcek, Filip [1 ]
机构
[1] Palacky Univ, Dept Algebra & Geometry, Fac Sci, 17 Listopadu 12, Olomouc 77146, Czech Republic
[2] Vienna Univ Technol, Fac Math & Geoinformat, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
来源
MATHEMATICA BOHEMICA | 2015年 / 140卷 / 01期
基金
奥地利科学基金会;
关键词
semiring; commutative semiring; multiplicatively idempotent semiring; semiring of characteristic 2; simple semiring; unitary Boolean ring; bounded distributive lattice;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Semirings are modifications of unitary rings where the additive reduct does not form a group in general, but only a monoid. We characterize multiplicatively idempotent semirings and Boolean rings as semirings satisfying particular identities. Further, we work with varieties of enriched semirings. We show that the variety of enriched multiplicatively idempotent semirings differs from the join of the variety of enriched unitary Boolean rings and the variety of enriched bounded distributive lattices. We get a characterization of this join.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 50 条
  • [31] Simple semirings with right multiplicatively absorbing elements
    Batikova, Barbora
    Kepka, Tomas
    Nemec, Petr
    SEMIGROUP FORUM, 2020, 101 (01) : 37 - 50
  • [32] Simple semirings with right multiplicatively absorbing elements
    Barbora Batíková
    Tomáš Kepka
    Petr Němec
    Semigroup Forum, 2020, 101 : 37 - 50
  • [33] On Additive Semigroups of Idempotent Semirings with Identity
    Petrov, A. A.
    Shklyaev, A. P.
    MATHEMATICAL NOTES, 2024, 116 (3-4) : 711 - 716
  • [34] IDEMPOTENT DISTRIBUTIVE SEMIRINGS .1.
    PASTIJN, F
    ROMANOWSKA, A
    ACTA SCIENTIARUM MATHEMATICARUM, 1982, 44 (3-4): : 239 - 253
  • [35] Derivations in a Product of Additively Idempotent Semirings
    Trendafilov, Ivan
    Tzvetkov, Radoslav
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [36] Varieties of idempotent semirings with commutative addition
    Francis Pastijn
    Xianzhong Zhao
    algebra universalis, 2005, 54 : 301 - 321
  • [37] Cyclic semirings with idempotent noncommutative addition
    E. M. Vechtomov
    I. V. Lubyagina
    Journal of Mathematical Sciences, 2012, 185 (3) : 367 - 380
  • [38] Interval Versions of Eigenspaces in Idempotent Semirings
    Plavka, Jan
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 286 - 292
  • [39] Varieties of idempotent semirings with commutative addition
    Pastijn, F
    Zhao, XZ
    ALGEBRA UNIVERSALIS, 2005, 54 (03) : 301 - 321
  • [40] Idempotent semirings with a commutative additive reduct
    Zhao, XZ
    SEMIGROUP FORUM, 2002, 64 (02) : 289 - 296