Idempotent semirings with a commutative additive reduct

被引:56
|
作者
Zhao, XZ [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
Induction Hypothesis; Nonempty Subset; Univeral Algebra; Additive Reduct; Congruence Relation;
D O I
10.1007/s002330010048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every semigroup S, we define a congruence relation rho on the power semiring (P(S),boolean OR,o) of S. If S is a band, then P(S)/rho is an idempotent semiring. This enables us to find models for the free objects in the variety of idempotent semirings whose additive reduct is a semilattice.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [1] Idempotent semirings with a commutative additive reduct
    Xianzhong Zhao
    Semigroup Forum, 2002, 64 : 289 - 296
  • [2] ON DEFINITION FOR COMMUTATIVE IDEMPOTENT SEMIRINGS
    OHASHI, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (02): : 113 - &
  • [3] Varieties of idempotent distributive semirings with regular multiplicative reduct
    A. K. Bhuniya
    R. Debnath
    Semigroup Forum, 2015, 90 : 843 - 847
  • [4] Varieties of idempotent distributive semirings with regular multiplicative reduct
    Bhuniya, A. K.
    Debnath, R.
    SEMIGROUP FORUM, 2015, 90 (03) : 843 - 847
  • [5] Varieties of idempotent semirings with commutative addition
    Francis Pastijn
    Xianzhong Zhao
    algebra universalis, 2005, 54 : 301 - 321
  • [6] Varieties of idempotent semirings with commutative addition
    Pastijn, F
    Zhao, XZ
    ALGEBRA UNIVERSALIS, 2005, 54 (03) : 301 - 321
  • [7] On semirings whose additive reduct is a semilattice
    M. K. Sen
    A. K. Bhuniya
    Semigroup Forum, 2011, 82 : 131 - 140
  • [8] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [9] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2017, 94 : 610 - 617
  • [10] On semirings whose additive reduct is a semilattice
    Sen, M. K.
    Bhuniya, A. K.
    SEMIGROUP FORUM, 2011, 82 (01) : 131 - 140