Idempotent semirings with a commutative additive reduct

被引:56
|
作者
Zhao, XZ [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
Induction Hypothesis; Nonempty Subset; Univeral Algebra; Additive Reduct; Congruence Relation;
D O I
10.1007/s002330010048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every semigroup S, we define a congruence relation rho on the power semiring (P(S),boolean OR,o) of S. If S is a band, then P(S)/rho is an idempotent semiring. This enables us to find models for the free objects in the variety of idempotent semirings whose additive reduct is a semilattice.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [41] Multiplicatively Idempotent Semirings with Annihilator Condition
    E. M. Vechtomov
    A. A. Petrov
    Russian Mathematics, 2023, 67 : 23 - 31
  • [42] Derivations in a Product of Additively Idempotent Semirings
    Trendafilov, Ivan
    Tzvetkov, Radoslav
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [43] Cyclic semirings with idempotent noncommutative addition
    E. M. Vechtomov
    I. V. Lubyagina
    Journal of Mathematical Sciences, 2012, 185 (3) : 367 - 380
  • [44] Interval Versions of Eigenspaces in Idempotent Semirings
    Plavka, Jan
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 286 - 292
  • [45] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [46] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [47] Finite simple additively idempotent semirings
    Kendziorra, Andreas
    Zumbraegel, Jens
    JOURNAL OF ALGEBRA, 2013, 388 : 43 - 64
  • [48] IDEMPOTENT DISTRIBUTIVE SEMIRINGS .2.
    PASTIJN, F
    SEMIGROUP FORUM, 1983, 26 (1-2) : 151 - 166
  • [49] SEMIRING OF QUOTIENTS OF COMMUTATIVE SEMIRINGS
    HUQ, SA
    COLLOQUIUM MATHEMATICUM, 1973, 28 (02) : 185 - 188
  • [50] Ideals and their complements in commutative semirings
    Chajda, Ivan
    Laenger, Helmut
    SOFT COMPUTING, 2019, 23 (14) : 5385 - 5392