Idempotent semirings with a commutative additive reduct

被引:56
|
作者
Zhao, XZ [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
Induction Hypothesis; Nonempty Subset; Univeral Algebra; Additive Reduct; Congruence Relation;
D O I
10.1007/s002330010048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every semigroup S, we define a congruence relation rho on the power semiring (P(S),boolean OR,o) of S. If S is a band, then P(S)/rho is an idempotent semiring. This enables us to find models for the free objects in the variety of idempotent semirings whose additive reduct is a semilattice.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [31] ℒ-subvarieties of the variety of idempotent semirings
    Xianzhong Z.
    Shum K.P.
    Guo Y.Q.
    algebra universalis, 2001, 46 (1) : 75 - 96
  • [32] Weak commutativity in idempotent semirings
    Pastijn, F
    SEMIGROUP FORUM, 2006, 72 (02) : 283 - 311
  • [33] Weak Commutativity in Idempotent Semirings
    F. Pastijn
    Semigroup Forum, 2006, 72 : 283 - 311
  • [34] Idempotent distributive semirings with involution
    Dolinka, I
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2003, 13 (05) : 597 - 625
  • [35] The Structure of Almost Idempotent Semirings
    Sen, M. K.
    Bhuniya, A. K.
    ALGEBRA COLLOQUIUM, 2010, 17 : 851 - 864
  • [36] Simple commutative semirings
    El Bashir, R
    Hurt, J
    Jancarík, A
    Kepka, T
    JOURNAL OF ALGEBRA, 2001, 236 (01) : 277 - 306
  • [37] On the weakly commutative semirings
    Sarkar, Puja
    Bhuniya, A. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (12)
  • [38] ARITY OF IDEMPOTENT REDUCT OF ABELIAN-GROUPS
    PLONKA, J
    COLLOQUIUM MATHEMATICUM, 1973, 27 (02) : 175 - 176
  • [39] ON COMMUTATIVE IDEMPOTENT RINGS
    ANDRUSZKIEWICZ, RR
    PUCZYLOWSKI, ER
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 341 - 349
  • [40] IDEMPOTENT DISTRIBUTIVE SEMIRINGS .1.
    PASTIJN, F
    ROMANOWSKA, A
    ACTA SCIENTIARUM MATHEMATICARUM, 1982, 44 (3-4): : 239 - 253