Multirelational representation theorems for complete idempotent left semirings

被引:0
|
作者
Furusawa, Hitoshi [1 ]
Nishizawa, Koki [2 ]
机构
[1] Kagoshima Univ, Dept Math & Comp Sci, Kagoshima 8900065, Japan
[2] Kanagawa Univ, Dept Informat Syst Creat, Kanagawa 2218686, Japan
基金
日本学术振兴会;
关键词
Complete idempotent left semirings; Multirelations; Representation theorem;
D O I
10.1016/j.jlamp.2014.08.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Complete idempotent left semirings are a relaxation of quantales by giving up strictness and distributivity of composition over arbitrary joins from the left. It is known that the set of up-closed multirelations over a set forms a complete idempotent left semiring together with union, multirelational composition, the empty multirelation, and the membership relation. This paper provides a sufficient condition for a complete idempotent left semiring to be isomorphic to a complete idempotent left semiring consisting of up-closed multirelations, in which all joins, the least element, multiplication, and the unit element are respectively given by unions, empty multirelations, the multirelational composition, and the membership relation. Some equivalent conditions of the sufficient condition are also provided. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:426 / 439
页数:14
相关论文
共 50 条
  • [1] Relational and Multirelational Representation Theorems for Complete Idempotent Left Semirings
    Furusawa, Hitoshi
    Nishizawa, Koki
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2011, 6663 : 148 - 163
  • [2] *-Continuous Idempotent Left Semirings and Their Ideal Completion
    Furusawa, Hitoshi
    Sanda, Fumiya
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, PROCEEDINGS, 2009, 5827 : 119 - 133
  • [3] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [4] A class of idempotent semirings
    Sen, MK
    Guo, YQ
    Shum, KP
    SEMIGROUP FORUM, 2000, 60 (03) : 351 - 367
  • [5] FULLY IDEMPOTENT SEMIRINGS
    AHSAN, J
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (06) : 185 - 188
  • [6] MULTIPLICATIVELY IDEMPOTENT SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    Svrcek, Filip
    MATHEMATICA BOHEMICA, 2015, 140 (01): : 35 - 42
  • [7] A Note on Idempotent Semirings
    Durcheva, Mariana
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [8] A class of idempotent semirings
    Sen M.K.
    Guo Y.Q.
    Shum K.P.
    Semigroup Forum, 2000, 60 (3) : 351 - 367
  • [9] Cayley’s and Holland’s Theorems for Idempotent Semirings and Their Applications to Residuated Lattices
    Nikolaos Galatos
    Rostislav Horčík
    Semigroup Forum, 2013, 87 : 569 - 589
  • [10] Cayley's and Holland's Theorems for Idempotent Semirings and Their Applications to Residuated Lattices
    Galatos, Nikolaos
    Horcik, Rostislav
    SEMIGROUP FORUM, 2013, 87 (03) : 569 - 589