Multirelational representation theorems for complete idempotent left semirings

被引:0
|
作者
Furusawa, Hitoshi [1 ]
Nishizawa, Koki [2 ]
机构
[1] Kagoshima Univ, Dept Math & Comp Sci, Kagoshima 8900065, Japan
[2] Kanagawa Univ, Dept Informat Syst Creat, Kanagawa 2218686, Japan
基金
日本学术振兴会;
关键词
Complete idempotent left semirings; Multirelations; Representation theorem;
D O I
10.1016/j.jlamp.2014.08.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Complete idempotent left semirings are a relaxation of quantales by giving up strictness and distributivity of composition over arbitrary joins from the left. It is known that the set of up-closed multirelations over a set forms a complete idempotent left semiring together with union, multirelational composition, the empty multirelation, and the membership relation. This paper provides a sufficient condition for a complete idempotent left semiring to be isomorphic to a complete idempotent left semiring consisting of up-closed multirelations, in which all joins, the least element, multiplication, and the unit element are respectively given by unions, empty multirelations, the multirelational composition, and the membership relation. Some equivalent conditions of the sufficient condition are also provided. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:426 / 439
页数:14
相关论文
共 50 条
  • [21] Varieties of idempotent semirings with commutative addition
    Francis Pastijn
    Xianzhong Zhao
    algebra universalis, 2005, 54 : 301 - 321
  • [22] Cyclic semirings with idempotent noncommutative addition
    E. M. Vechtomov
    I. V. Lubyagina
    Journal of Mathematical Sciences, 2012, 185 (3) : 367 - 380
  • [23] Interval Versions of Eigenspaces in Idempotent Semirings
    Plavka, Jan
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 286 - 292
  • [24] Varieties of idempotent semirings with commutative addition
    Pastijn, F
    Zhao, XZ
    ALGEBRA UNIVERSALIS, 2005, 54 (03) : 301 - 321
  • [25] Idempotent semirings with a commutative additive reduct
    Zhao, XZ
    SEMIGROUP FORUM, 2002, 64 (02) : 289 - 296
  • [26] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [27] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [28] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [29] Idempotent semirings with a commutative additive reduct
    Xianzhong Zhao
    Semigroup Forum, 2002, 64 : 289 - 296
  • [30] Finite simple additively idempotent semirings
    Kendziorra, Andreas
    Zumbraegel, Jens
    JOURNAL OF ALGEBRA, 2013, 388 : 43 - 64