Coequalizers and Tensor Products for Continuous Idempotent Semirings

被引:3
|
作者
Hopkins, Mark [1 ]
Leiss, Hans [2 ]
机构
[1] UW Milwaukee, Milwaukee, WI 53211 USA
[2] Ludwig Maximilians Univ Munchen, Ctr Informat & Sprachverarbeitung, Oettingenstr 67, D-80539 Munich, Germany
关键词
KLEENE ALGEBRAS;
D O I
10.1007/978-3-030-02149-8_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide constructions of coproducts, free extensions, coequalizers and tensor products for classes of idempotent semirings in which certain subsets have least upper bounds and the operations are sup-continuous. Among these classes are the *-continuous Kleene algebras, the mu-continuous Chomsky-algebras, and the unital quantales.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [21] Varieties of idempotent semirings with commutative addition
    Francis Pastijn
    Xianzhong Zhao
    algebra universalis, 2005, 54 : 301 - 321
  • [22] Cyclic semirings with idempotent noncommutative addition
    E. M. Vechtomov
    I. V. Lubyagina
    Journal of Mathematical Sciences, 2012, 185 (3) : 367 - 380
  • [23] Interval Versions of Eigenspaces in Idempotent Semirings
    Plavka, Jan
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 286 - 292
  • [24] Varieties of idempotent semirings with commutative addition
    Pastijn, F
    Zhao, XZ
    ALGEBRA UNIVERSALIS, 2005, 54 (03) : 301 - 321
  • [25] Idempotent semirings with a commutative additive reduct
    Zhao, XZ
    SEMIGROUP FORUM, 2002, 64 (02) : 289 - 296
  • [26] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [27] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [28] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [29] Idempotent semirings with a commutative additive reduct
    Xianzhong Zhao
    Semigroup Forum, 2002, 64 : 289 - 296
  • [30] Finite simple additively idempotent semirings
    Kendziorra, Andreas
    Zumbraegel, Jens
    JOURNAL OF ALGEBRA, 2013, 388 : 43 - 64