Weak Commutativity in Idempotent Semirings

被引:0
|
作者
F. Pastijn
机构
[1] Department of Mathematics,
[2] Statistics and Computer Science,undefined
[3] Marquette University,undefined
[4] P.O. Box 1881,undefined
[5] Milwaukee,undefined
[6] WI 53201-1881,undefined
来源
Semigroup Forum | 2006年 / 72卷
关键词
Distributive Lattice; Additive Reduct; Subdirect Product; Structural Relevance; Regular Band;
D O I
暂无
中图分类号
学科分类号
摘要
Let U be the variety of idempotent semirings satisfying xy + yx = yx + xy. We give a description of the lattice L(U) of subvarieties of U: L(U) happens to be a 662-element distributive lattice which is isomorphic to a subdirect product of the lattices L(S+ l) and L(S. l), where L(S+ l) [L(S. l)] denotes the variety of all idempotent semirings whose additive [multiplicative] reduct is a semilattice. In particular, U = L(S+ l) ⋁ L(S. l). Every subvariety of U is finitely generated and finitely based. If S ∈ U, then both the additive reduct and the multiplicative reduct of S are regular bands. The structural relevance of the least U-congruence is investigated.
引用
收藏
页码:283 / 311
页数:28
相关论文
共 50 条
  • [21] Interval Versions of Eigenspaces in Idempotent Semirings
    Plavka, Jan
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 286 - 292
  • [22] Varieties of idempotent semirings with commutative addition
    Pastijn, F
    Zhao, XZ
    ALGEBRA UNIVERSALIS, 2005, 54 (03) : 301 - 321
  • [23] Idempotent semirings with a commutative additive reduct
    Zhao, XZ
    SEMIGROUP FORUM, 2002, 64 (02) : 289 - 296
  • [24] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [25] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [26] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [27] Idempotent semirings with a commutative additive reduct
    Xianzhong Zhao
    Semigroup Forum, 2002, 64 : 289 - 296
  • [28] Finite simple additively idempotent semirings
    Kendziorra, Andreas
    Zumbraegel, Jens
    JOURNAL OF ALGEBRA, 2013, 388 : 43 - 64
  • [29] IDEMPOTENT DISTRIBUTIVE SEMIRINGS .2.
    PASTIJN, F
    SEMIGROUP FORUM, 1983, 26 (1-2) : 151 - 166
  • [30] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2017, 94 : 610 - 617