Weak Commutativity in Idempotent Semirings

被引:0
|
作者
F. Pastijn
机构
[1] Department of Mathematics,
[2] Statistics and Computer Science,undefined
[3] Marquette University,undefined
[4] P.O. Box 1881,undefined
[5] Milwaukee,undefined
[6] WI 53201-1881,undefined
来源
Semigroup Forum | 2006年 / 72卷
关键词
Distributive Lattice; Additive Reduct; Subdirect Product; Structural Relevance; Regular Band;
D O I
暂无
中图分类号
学科分类号
摘要
Let U be the variety of idempotent semirings satisfying xy + yx = yx + xy. We give a description of the lattice L(U) of subvarieties of U: L(U) happens to be a 662-element distributive lattice which is isomorphic to a subdirect product of the lattices L(S+ l) and L(S. l), where L(S+ l) [L(S. l)] denotes the variety of all idempotent semirings whose additive [multiplicative] reduct is a semilattice. In particular, U = L(S+ l) ⋁ L(S. l). Every subvariety of U is finitely generated and finitely based. If S ∈ U, then both the additive reduct and the multiplicative reduct of S are regular bands. The structural relevance of the least U-congruence is investigated.
引用
收藏
页码:283 / 311
页数:28
相关论文
共 50 条
  • [11] The Structure of Almost Idempotent Semirings
    Sen, M. K.
    Bhuniya, A. K.
    ALGEBRA COLLOQUIUM, 2010, 17 : 851 - 864
  • [12] A commutativity theorem for division semirings
    Bogdanov, I.I.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2004, (03): : 3 - 7
  • [13] ON DEFINITION FOR COMMUTATIVE IDEMPOTENT SEMIRINGS
    OHASHI, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (02): : 113 - &
  • [14] On Additive Semigroups of Idempotent Semirings with Identity
    Petrov, A. A.
    Shklyaev, A. P.
    MATHEMATICAL NOTES, 2024, 116 (3-4) : 711 - 716
  • [15] IDEMPOTENT DISTRIBUTIVE SEMIRINGS .1.
    PASTIJN, F
    ROMANOWSKA, A
    ACTA SCIENTIARUM MATHEMATICARUM, 1982, 44 (3-4): : 239 - 253
  • [16] Multiplicatively Idempotent Semirings with Annihilator Condition
    E. M. Vechtomov
    A. A. Petrov
    Russian Mathematics, 2023, 67 : 23 - 31
  • [17] Derivations in a Product of Additively Idempotent Semirings
    Trendafilov, Ivan
    Tzvetkov, Radoslav
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [18] Varieties of idempotent semirings with commutative addition
    Francis Pastijn
    Xianzhong Zhao
    algebra universalis, 2005, 54 : 301 - 321
  • [19] SOME COMMUTATIVITY CONDITIONS ON *-PRIME SEMIRINGS
    Ali, Liaqat
    Aslam, Muhammad
    Ahmed, Yaqoub
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 46 (02): : 109 - 121
  • [20] Cyclic semirings with idempotent noncommutative addition
    E. M. Vechtomov
    I. V. Lubyagina
    Journal of Mathematical Sciences, 2012, 185 (3) : 367 - 380