Weak Commutativity in Idempotent Semirings

被引:0
|
作者
F. Pastijn
机构
[1] Department of Mathematics,
[2] Statistics and Computer Science,undefined
[3] Marquette University,undefined
[4] P.O. Box 1881,undefined
[5] Milwaukee,undefined
[6] WI 53201-1881,undefined
来源
Semigroup Forum | 2006年 / 72卷
关键词
Distributive Lattice; Additive Reduct; Subdirect Product; Structural Relevance; Regular Band;
D O I
暂无
中图分类号
学科分类号
摘要
Let U be the variety of idempotent semirings satisfying xy + yx = yx + xy. We give a description of the lattice L(U) of subvarieties of U: L(U) happens to be a 662-element distributive lattice which is isomorphic to a subdirect product of the lattices L(S+ l) and L(S. l), where L(S+ l) [L(S. l)] denotes the variety of all idempotent semirings whose additive [multiplicative] reduct is a semilattice. In particular, U = L(S+ l) ⋁ L(S. l). Every subvariety of U is finitely generated and finitely based. If S ∈ U, then both the additive reduct and the multiplicative reduct of S are regular bands. The structural relevance of the least U-congruence is investigated.
引用
收藏
页码:283 / 311
页数:28
相关论文
共 50 条
  • [31] Subdirectly irreducible commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Algebra universalis, 2016, 76 : 327 - 337
  • [32] The variety of commutative additively and multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2018, 96 (02) : 409 - 415
  • [33] Proper/Residually-Finite Idempotent Semirings
    Griffing, Gary
    SEMIGROUP FORUM, 2013, 86 (03) : 486 - 510
  • [34] Congruence-simple multiplicatively idempotent semirings
    Kepka, Tomas
    Korbelar, Miroslav
    Landsmann, Guenter
    ALGEBRA UNIVERSALIS, 2023, 84 (02)
  • [35] L-subvarieties of the variety of idempotent semirings
    Zhao, XZ
    Shum, KP
    Guo, YQ
    ALGEBRA UNIVERSALIS, 2001, 46 (1-2) : 75 - 96
  • [36] On commutativity of quotient semirings through generalized derivations
    Mahmood, Tariq
    Ali, Liaqat
    Aslam, Muhammad
    Farid, Ghulam
    AIMS MATHEMATICS, 2023, 8 (11): : 25729 - 25739
  • [37] Proper/Residually-Finite Idempotent Semirings
    Gary Griffing
    Semigroup Forum, 2013, 86 : 486 - 510
  • [38] Structures of idempotent matrices over chain semirings
    Kanc, Kyung-Tae
    Song, Seok-Zun
    Yang, Younc-Oh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) : 721 - 729
  • [39] On Additive Idempotent k-Clifford Semirings
    Sen, M. K.
    Bhuniya, A. K.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (06) : 1149 - 1159
  • [40] ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION
    DUDNIKOV, PI
    SAMBORSKII, SN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 91 - 105