On the (Consecutively) Super Edge-Magic Deficiency of Subdivision of Double Stars

被引:0
|
作者
Krisnawati, Vira Hari [1 ]
Ngurah, Anak Agung Gede [2 ]
Hidayat, Noor [1 ]
Alghofari, Abdul Rouf [1 ]
机构
[1] Brawijaya Univ, Fac Math & Nat Sci, Dept Math, Jl Veteran, Malang, Jawa Timur, Indonesia
[2] Univ Merdeka Malang, Fac Engn, Dept Civil Engn, Jl Taman Agung 1, Malang, Jawa Timur, Indonesia
关键词
LABELINGS;
D O I
10.1155/2020/4285238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite, simple, and undirected graph with vertex set V(G) and edge set E(G). A super edge-magic labeling of G is a bijection f: V(G) boolean OR E(G). {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} such that f(V(G)). {1, 2,..., vertical bar V(G)vertical bar} and f(u) + f(uv) + f(v) is a constant for every edge uv is an element of E(G). +esuper edge-magic labeling f ofG is called consecutively super edge-magic ifG is a bipartite graph with partite sets A and B such that f(A) = {1, 2,..., vertical bar A vertical bar} and f(B) = {vertical bar A vertical bar + 1, vertical bar A vertical bar + 2,..., vertical bar V(G)vertical bar}. A graph that admits (consecutively) super edge-magic labeling is called a (consecutively) super edge-magic graph. The super edge-magic deficiency of G, denoted by mu(s)(G), is either the minimum nonnegative integer n such that G boolean OR nK(1) is super edge-magic or +infinity if there exists no such n. The consecutively super edge-magic deficiency of a graph G is defined by a similar way. In this paper, we investigate the (consecutively) super edge-magic deficiency of subdivision of double stars. We show that, some of them have zero (consecutively) super edge-magic deficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] FURTHER RESULTS ON SUPER EDGE-MAGIC GRAPHS
    不详
    UTILITAS MATHEMATICA, 2019, 110 : 283 - 291
  • [42] Special super edge-magic sequences on (q
    Anjaneyulu, G. S. G. N.
    Vijayabarathi, A.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2013, 16 (06): : 349 - 365
  • [43] The Jumping Knight and Other (Super) Edge-Magic Constructions
    S. C. López
    F. A. Muntaner-Batle
    M. Rius-Font
    Mediterranean Journal of Mathematics, 2014, 11 : 217 - 235
  • [44] Super Edge-Magic Deficiency of Disjoint Union of Shrub Tree, Star and Path Graphs
    Khalid, Aasma A.
    Sana, Gul
    Khidmat, Maryem
    Baig, A. Q.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2015, 47 (02): : 1 - 10
  • [45] Super edge-magic total labeling of combination graphs
    Li, Jingwen
    Wang, Bimei
    Gu, Yanbo
    Shao, Shuhong
    Engineering Letters, 2020, 28 (02): : 412 - 419
  • [46] On super edge-magic total labeling of banana trees
    Hussain, M.
    Baskoro, E. T.
    Slamin
    UTILITAS MATHEMATICA, 2009, 79 : 243 - 251
  • [47] The Jumping Knight and Other (Super) Edge-Magic Constructions
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 217 - 235
  • [48] Super Edge-magic Total Labeling of Combination Graphs
    Li, Jingwen
    Wang, Bimei
    Gu, Yanbo
    Shao, Shuhong
    ENGINEERING LETTERS, 2020, 28 (02) : 412 - 419
  • [49] Super edge-magic labeling of accordion and bracelet graphs
    Baig, A. Q.
    Afzal, Hafiz U.
    Imran, M.
    Bashir, M. S.
    Qureshi, R. J.
    UTILITAS MATHEMATICA, 2017, 102 : 283 - 297
  • [50] An Expansion Technique on Super Edge-Magic Total Graphs
    Sudarsana, I. W.
    Baskoro, E. T.
    Uttunggadewa, S.
    Ismaimuza, D.
    ARS COMBINATORIA, 2009, 91 : 231 - 241