On the (Consecutively) Super Edge-Magic Deficiency of Subdivision of Double Stars

被引:0
|
作者
Krisnawati, Vira Hari [1 ]
Ngurah, Anak Agung Gede [2 ]
Hidayat, Noor [1 ]
Alghofari, Abdul Rouf [1 ]
机构
[1] Brawijaya Univ, Fac Math & Nat Sci, Dept Math, Jl Veteran, Malang, Jawa Timur, Indonesia
[2] Univ Merdeka Malang, Fac Engn, Dept Civil Engn, Jl Taman Agung 1, Malang, Jawa Timur, Indonesia
关键词
LABELINGS;
D O I
10.1155/2020/4285238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite, simple, and undirected graph with vertex set V(G) and edge set E(G). A super edge-magic labeling of G is a bijection f: V(G) boolean OR E(G). {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} such that f(V(G)). {1, 2,..., vertical bar V(G)vertical bar} and f(u) + f(uv) + f(v) is a constant for every edge uv is an element of E(G). +esuper edge-magic labeling f ofG is called consecutively super edge-magic ifG is a bipartite graph with partite sets A and B such that f(A) = {1, 2,..., vertical bar A vertical bar} and f(B) = {vertical bar A vertical bar + 1, vertical bar A vertical bar + 2,..., vertical bar V(G)vertical bar}. A graph that admits (consecutively) super edge-magic labeling is called a (consecutively) super edge-magic graph. The super edge-magic deficiency of G, denoted by mu(s)(G), is either the minimum nonnegative integer n such that G boolean OR nK(1) is super edge-magic or +infinity if there exists no such n. The consecutively super edge-magic deficiency of a graph G is defined by a similar way. In this paper, we investigate the (consecutively) super edge-magic deficiency of subdivision of double stars. We show that, some of them have zero (consecutively) super edge-magic deficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Cycle-based super edge-magic graphs and their super edge-magic sequences
    Anjaneyulu, G. S. G. N.
    Vijayabarathi, A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (04) : 378 - 391
  • [22] Super Edge-Magic Models
    López S.C.
    Muntaner-Batle F.A.
    Rius-Font M.
    Mathematics in Computer Science, 2011, 5 (1) : 63 - 68
  • [23] On super edge-magic graphs
    Figueroa-Centeno, RM
    Ichishima, R
    Muntaner-Batle, FA
    ARS COMBINATORIA, 2002, 64 : 81 - 95
  • [24] On super edge-magic graphs
    Kim, Suh-Ryung
    Park, Ji Yeon
    ARS COMBINATORIA, 2006, 81 : 113 - 127
  • [25] On the super edge-magic deficiency of join product and chain graphs
    Ngurah, Anak Agung Gede
    Simanjuntak, Rinovia
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (01) : 157 - 167
  • [26] ON THE SUPER EDGE-MAGIC DEFICIENCY AND alpha-VALUATIONS OF GRAPHS
    Ichishima, Rikio
    Oshima, Akito
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2011, : 59 - 69
  • [27] Super edge-magic deficiency of join-product graphs
    Ngurah, A. A. G.
    Simanjuntak, Rinovia
    UTILITAS MATHEMATICA, 2017, 105 : 279 - 289
  • [28] On super edge-magic decomposable graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (05): : 455 - 473
  • [29] On super edge-magic decomposable graphs
    S. C. López
    F. A. Muntaner-Batle
    M. Rius-Font
    Indian Journal of Pure and Applied Mathematics, 2012, 43 : 455 - 473
  • [30] Perfect (super) Edge-Magic Crowns
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Prabu, M.
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1459 - 1471