On the (Consecutively) Super Edge-Magic Deficiency of Subdivision of Double Stars

被引:0
|
作者
Krisnawati, Vira Hari [1 ]
Ngurah, Anak Agung Gede [2 ]
Hidayat, Noor [1 ]
Alghofari, Abdul Rouf [1 ]
机构
[1] Brawijaya Univ, Fac Math & Nat Sci, Dept Math, Jl Veteran, Malang, Jawa Timur, Indonesia
[2] Univ Merdeka Malang, Fac Engn, Dept Civil Engn, Jl Taman Agung 1, Malang, Jawa Timur, Indonesia
关键词
LABELINGS;
D O I
10.1155/2020/4285238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite, simple, and undirected graph with vertex set V(G) and edge set E(G). A super edge-magic labeling of G is a bijection f: V(G) boolean OR E(G). {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} such that f(V(G)). {1, 2,..., vertical bar V(G)vertical bar} and f(u) + f(uv) + f(v) is a constant for every edge uv is an element of E(G). +esuper edge-magic labeling f ofG is called consecutively super edge-magic ifG is a bipartite graph with partite sets A and B such that f(A) = {1, 2,..., vertical bar A vertical bar} and f(B) = {vertical bar A vertical bar + 1, vertical bar A vertical bar + 2,..., vertical bar V(G)vertical bar}. A graph that admits (consecutively) super edge-magic labeling is called a (consecutively) super edge-magic graph. The super edge-magic deficiency of G, denoted by mu(s)(G), is either the minimum nonnegative integer n such that G boolean OR nK(1) is super edge-magic or +infinity if there exists no such n. The consecutively super edge-magic deficiency of a graph G is defined by a similar way. In this paper, we investigate the (consecutively) super edge-magic deficiency of subdivision of double stars. We show that, some of them have zero (consecutively) super edge-magic deficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] On Super Edge-Magic Deficiency of Unicyclic Graphs
    Ahmad, Ali
    Muntaner-Batle, F. A.
    UTILITAS MATHEMATICA, 2015, 98 : 379 - 386
  • [12] On the super edge-magic deficiency of some graphs
    Krisnawati, Vira Hari
    Ngurah, Anak Agung Gede
    Hidayat, Noor
    Alghofari, Abdul Rouf
    HELIYON, 2020, 6 (11)
  • [13] STAR SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Kathiresan, K. M.
    Madha, S. Sabarimalai
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (01) : 143 - 156
  • [14] On (Super) Edge-Magic Total Labelings of a Subdivision of a Star Sn
    Salman, A. N. M.
    Ngurah, A. A. Gede
    Izzati, N.
    UTILITAS MATHEMATICA, 2010, 81 : 275 - 284
  • [15] Super edge-magic total labeling of subdivided stars
    Ali, K.
    Hussain, M.
    Shaker, H.
    Javaid, M.
    ARS COMBINATORIA, 2015, 120 : 161 - 167
  • [16] ON THE SEQUENTIAL NUMBER AND SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Figueroa-Centeno, R. M.
    Ichishima, R.
    ARS COMBINATORIA, 2016, 129 : 157 - 163
  • [17] On super edge-magic deficiency of certain Toeplitz graphs
    Ahmad, Ali
    Nadeem, Muhammad Faisal
    Gupta, Ashok
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 513 - 519
  • [18] SOME RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Imran, M.
    Baig, A. Q.
    Fenovcikova, A. S.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (02): : 237 - 249
  • [19] FURTHER RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Hegde, S. M.
    Shetty, Sudhakar
    Shankaran, P.
    ARS COMBINATORIA, 2011, 99 : 487 - 502
  • [20] On super edge-magic deficiency of volvox and dumbbell graphs
    Imran, Muhammad
    Afzal, Hafiz Usman
    Baig, A. Q.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (02) : 112 - 119