On the (Consecutively) Super Edge-Magic Deficiency of Subdivision of Double Stars

被引:0
|
作者
Krisnawati, Vira Hari [1 ]
Ngurah, Anak Agung Gede [2 ]
Hidayat, Noor [1 ]
Alghofari, Abdul Rouf [1 ]
机构
[1] Brawijaya Univ, Fac Math & Nat Sci, Dept Math, Jl Veteran, Malang, Jawa Timur, Indonesia
[2] Univ Merdeka Malang, Fac Engn, Dept Civil Engn, Jl Taman Agung 1, Malang, Jawa Timur, Indonesia
关键词
LABELINGS;
D O I
10.1155/2020/4285238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite, simple, and undirected graph with vertex set V(G) and edge set E(G). A super edge-magic labeling of G is a bijection f: V(G) boolean OR E(G). {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} such that f(V(G)). {1, 2,..., vertical bar V(G)vertical bar} and f(u) + f(uv) + f(v) is a constant for every edge uv is an element of E(G). +esuper edge-magic labeling f ofG is called consecutively super edge-magic ifG is a bipartite graph with partite sets A and B such that f(A) = {1, 2,..., vertical bar A vertical bar} and f(B) = {vertical bar A vertical bar + 1, vertical bar A vertical bar + 2,..., vertical bar V(G)vertical bar}. A graph that admits (consecutively) super edge-magic labeling is called a (consecutively) super edge-magic graph. The super edge-magic deficiency of G, denoted by mu(s)(G), is either the minimum nonnegative integer n such that G boolean OR nK(1) is super edge-magic or +infinity if there exists no such n. The consecutively super edge-magic deficiency of a graph G is defined by a similar way. In this paper, we investigate the (consecutively) super edge-magic deficiency of subdivision of double stars. We show that, some of them have zero (consecutively) super edge-magic deficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] On the super edge-magic deficiencies of graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 3 - 14
  • [32] Perfect super edge-magic graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (02): : 199 - 208
  • [33] On the super edge-magic deficiency of some families related to ladder graphs
    Ahmad, Ali
    Nadeem, Muhammad Faisal
    Javaid, Imran
    Hasni, Roslan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 201 - 208
  • [34] Perfect (super) Edge-Magic Crowns
    S. C. López
    F. A. Muntaner-Batle
    M. Prabu
    Results in Mathematics, 2017, 71 : 1459 - 1471
  • [35] On the construction of super edge-magic total graphs
    Darmaji
    Wahyudi, S.
    Rinurwati
    Saputro, S. W.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 301 - 309
  • [36] ON THE SUPER EDGE-MAGIC DEFICIENCY OF 2-REGULAR GRAPHS WITH TWO COMPONENTS
    Ichishima, Rikio
    Oshima, Akito
    ARS COMBINATORIA, 2016, 129 : 437 - 447
  • [37] Super edge-magic total labeling of a tree
    Ali, K.
    Hussain, M.
    Razzaq, A.
    UTILITAS MATHEMATICA, 2013, 91 : 355 - 364
  • [38] On super edge-magic labeling of some graphs
    Park, Ji Yeon
    Choi, Jin Hyuk
    Bae, Jae-Hyeong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (01) : 11 - 21
  • [39] Super edge-magic strength of some trees
    Swaminathan, V.
    Jeyanthi, P.
    UTILITAS MATHEMATICA, 2007, 72 : 199 - 210
  • [40] On the new families of (super) edge-magic graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    UTILITAS MATHEMATICA, 2007, 74 : 111 - 120