On the (Consecutively) Super Edge-Magic Deficiency of Subdivision of Double Stars

被引:0
|
作者
Krisnawati, Vira Hari [1 ]
Ngurah, Anak Agung Gede [2 ]
Hidayat, Noor [1 ]
Alghofari, Abdul Rouf [1 ]
机构
[1] Brawijaya Univ, Fac Math & Nat Sci, Dept Math, Jl Veteran, Malang, Jawa Timur, Indonesia
[2] Univ Merdeka Malang, Fac Engn, Dept Civil Engn, Jl Taman Agung 1, Malang, Jawa Timur, Indonesia
关键词
LABELINGS;
D O I
10.1155/2020/4285238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite, simple, and undirected graph with vertex set V(G) and edge set E(G). A super edge-magic labeling of G is a bijection f: V(G) boolean OR E(G). {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} such that f(V(G)). {1, 2,..., vertical bar V(G)vertical bar} and f(u) + f(uv) + f(v) is a constant for every edge uv is an element of E(G). +esuper edge-magic labeling f ofG is called consecutively super edge-magic ifG is a bipartite graph with partite sets A and B such that f(A) = {1, 2,..., vertical bar A vertical bar} and f(B) = {vertical bar A vertical bar + 1, vertical bar A vertical bar + 2,..., vertical bar V(G)vertical bar}. A graph that admits (consecutively) super edge-magic labeling is called a (consecutively) super edge-magic graph. The super edge-magic deficiency of G, denoted by mu(s)(G), is either the minimum nonnegative integer n such that G boolean OR nK(1) is super edge-magic or +infinity if there exists no such n. The consecutively super edge-magic deficiency of a graph G is defined by a similar way. In this paper, we investigate the (consecutively) super edge-magic deficiency of subdivision of double stars. We show that, some of them have zero (consecutively) super edge-magic deficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Super edge-magic total labeling of subdivision of stars
    Shaker, H.
    Rana, A.
    Zobair, M. M.
    Hussain, M.
    ARS COMBINATORIA, 2014, 116 : 177 - 183
  • [2] The consecutively super edge-magic deficiency of graphs and related concepts
    Ichishima, Rikio
    Muntaner-Batle, Francesc A.
    Oshima, Akito
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (01) : 71 - 92
  • [3] On the super edge-magic deficiency of forests
    Baig, A. Q.
    Ahmad, Ali
    Baskoro, Edy Tri
    Simanjuntak, Rinovia
    UTILITAS MATHEMATICA, 2011, 86 : 147 - 159
  • [4] Super edge-magic deficiency of graphs
    Baig, A. Q.
    Imran, M.
    Javaid, I.
    Semanicova-Fenovcikova, Andrea
    UTILITAS MATHEMATICA, 2012, 87 : 355 - 364
  • [5] On the Super Edge-Magic Deficiency of Forests
    Krisnawati, Vira Hari
    Ngurah, Anak Agung Gede
    Hidayat, Noor
    Alghofari, Abdul Rouf
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [6] On the super edge-magic deficiency of graphs
    Figueroa-Centeno, RM
    Ichishima, R
    Muntaner-Batle, FA
    ARS COMBINATORIA, 2006, 78 : 33 - 45
  • [7] On super edge-magic total labeling on subdivision of trees
    Javaid, M.
    Hussain, M.
    Ali, K.
    Shaker, H.
    UTILITAS MATHEMATICA, 2012, 89 : 169 - 177
  • [8] On the super edge-magic deficiency of a star forest
    Baig, A. Q.
    Baskoro, Edy Tri
    Semanicova-Fenovcikova, Andrea
    ARS COMBINATORIA, 2014, 115 : 3 - 12
  • [9] On Super Edge-Magic Strength and Deficiency of Graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    Uttunggadewa, S.
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 144 - 154
  • [10] ON SUPER EDGE-MAGIC DEFICIENCY OF CERTAIN GRAPHS
    Chaudhary, M. U.
    Sarfraz, A. A.
    UTILITAS MATHEMATICA, 2020, 116 : 73 - 81