On super edge-magic decomposable graphs

被引:0
|
作者
S. C. López
F. A. Muntaner-Batle
M. Rius-Font
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemàtica Aplicada IV
[2] The University of Newcastle,Graph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built Environment
关键词
Super edge-magic decomposable; ⋇; -product;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be any graph and let {Hi}i∈I be a family of graphs such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\left( {H_i } \right) \cap E\left( {H_j } \right) = \not 0$$\end{document} when i ≠ j, ∪i∈IE(Hi) = E(G) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\left( {H_i } \right) \ne \not 0$$\end{document} for all i ∈ I. In this paper we introduce the concept of {Hi}i∈I-super edge-magic decomposable graphs and {Hi}i∈I-super edge-magic labelings. We say that G is {Hi}i∈I-super edge-magic decomposable if there is a bijection β: V(G) → {1,2,..., |V(G)|} such that for each i ∈ I the subgraph Hi meets the following two requirements: β(V(Hi)) = {1,2,..., |V(Hi)|} and {β(a) +β(b): ab ∈ E(Hi)} is a set of consecutive integers. Such function β is called an {Hi}i∈I-super edge-magic labeling of G. We characterize the set of cycles Cn which are {H1, H2}-super edge-magic decomposable when both, H1 and H2 are isomorphic to (n/2)K2. New lines of research are also suggested.
引用
收藏
页码:455 / 473
页数:18
相关论文
共 50 条
  • [1] On super edge-magic decomposable graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (05): : 455 - 473
  • [2] On super edge-magic graphs
    Figueroa-Centeno, RM
    Ichishima, R
    Muntaner-Batle, FA
    ARS COMBINATORIA, 2002, 64 : 81 - 95
  • [3] On super edge-magic graphs
    Kim, Suh-Ryung
    Park, Ji Yeon
    ARS COMBINATORIA, 2006, 81 : 113 - 127
  • [4] Cycle-based super edge-magic graphs and their super edge-magic sequences
    Anjaneyulu, G. S. G. N.
    Vijayabarathi, A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (04) : 378 - 391
  • [5] Super edge-magic deficiency of graphs
    Baig, A. Q.
    Imran, M.
    Javaid, I.
    Semanicova-Fenovcikova, Andrea
    UTILITAS MATHEMATICA, 2012, 87 : 355 - 364
  • [6] On the super edge-magic deficiencies of graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 3 - 14
  • [7] Perfect super edge-magic graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (02): : 199 - 208
  • [8] On the super edge-magic deficiency of graphs
    Figueroa-Centeno, RM
    Ichishima, R
    Muntaner-Batle, FA
    ARS COMBINATORIA, 2006, 78 : 33 - 45
  • [9] On the construction of super edge-magic total graphs
    Darmaji
    Wahyudi, S.
    Rinurwati
    Saputro, S. W.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 301 - 309
  • [10] On super edge-magic labeling of some graphs
    Park, Ji Yeon
    Choi, Jin Hyuk
    Bae, Jae-Hyeong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (01) : 11 - 21