The Jumping Knight and Other (Super) Edge-Magic Constructions

被引:0
|
作者
S. C. López
F. A. Muntaner-Batle
M. Rius-Font
机构
[1] Universitat Politècnica de Catalunya,Dept. Matemàtica Apl. IV
[2] BarcelonaTech,Graph Theory and Applications Research Group, Faculty of Engineeringand Built Environment, School of Electrical Engineering and ComputerScience
[3] The University of Newcastle,undefined
来源
关键词
Primary 05C78; (Super) edge-magic; Jacobsthal sequence; dual shuffle prime; -product;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph of order p and size q with loops allowed. A bijective function f:V(G)∪E(G)→{i}i=1p+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f:V(G)\cup E(G)\rightarrow \{i\}_{i=1}^{p+q}}$$\end{document} is an edge-magic labeling of G if the sum f(u)+f(uv)+f(v)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(u)+f(uv)+f(v)=k}$$\end{document} is independent of the choice of the edge uv. The constant k is called either the valence, the magic weight or the magic sum of the labeling f. If a graph admits an edge-magic labeling, then it is called an edge-magic graph. Furthermore, if the function f meets the extra condition that f(V(G))={i}i=1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(V(G))=\{i\}_{i=1}^{p}}$$\end{document} then f is called a super edge-magic labeling and G is called a super edge-magic graph. A digraph D admits a labeling, namely l, if its underlying graph, und(D) admits l. In this paper, we introduce a new construction of super edge-magic labelings which are related to the classical jump of the knight on the chess game. We also use super edge-magic labelings of digraphs together with a generalization of the Kronecker product to get edge-magic labelings of some families of graphs.
引用
收藏
页码:217 / 235
页数:18
相关论文
共 50 条
  • [1] The Jumping Knight and Other (Super) Edge-Magic Constructions
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 217 - 235
  • [2] Cycle-based super edge-magic graphs and their super edge-magic sequences
    Anjaneyulu, G. S. G. N.
    Vijayabarathi, A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (04) : 378 - 391
  • [3] Super Edge-Magic Models
    López S.C.
    Muntaner-Batle F.A.
    Rius-Font M.
    Mathematics in Computer Science, 2011, 5 (1) : 63 - 68
  • [4] BI-MAGIC AND OTHER GENERALIZATIONS OF SUPER EDGE-MAGIC LABELINGS
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (01) : 137 - 152
  • [5] On super edge-magic graphs
    Figueroa-Centeno, RM
    Ichishima, R
    Muntaner-Batle, FA
    ARS COMBINATORIA, 2002, 64 : 81 - 95
  • [6] On super edge-magic graphs
    Kim, Suh-Ryung
    Park, Ji Yeon
    ARS COMBINATORIA, 2006, 81 : 113 - 127
  • [7] On the super edge-magic deficiency of forests
    Baig, A. Q.
    Ahmad, Ali
    Baskoro, Edy Tri
    Simanjuntak, Rinovia
    UTILITAS MATHEMATICA, 2011, 86 : 147 - 159
  • [8] On super edge-magic decomposable graphs
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Rius-Font, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (05): : 455 - 473
  • [9] On super edge-magic decomposable graphs
    S. C. López
    F. A. Muntaner-Batle
    M. Rius-Font
    Indian Journal of Pure and Applied Mathematics, 2012, 43 : 455 - 473
  • [10] Super edge-magic deficiency of graphs
    Baig, A. Q.
    Imran, M.
    Javaid, I.
    Semanicova-Fenovcikova, Andrea
    UTILITAS MATHEMATICA, 2012, 87 : 355 - 364