The Jumping Knight and Other (Super) Edge-Magic Constructions

被引:0
|
作者
S. C. López
F. A. Muntaner-Batle
M. Rius-Font
机构
[1] Universitat Politècnica de Catalunya,Dept. Matemàtica Apl. IV
[2] BarcelonaTech,Graph Theory and Applications Research Group, Faculty of Engineeringand Built Environment, School of Electrical Engineering and ComputerScience
[3] The University of Newcastle,undefined
来源
关键词
Primary 05C78; (Super) edge-magic; Jacobsthal sequence; dual shuffle prime; -product;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph of order p and size q with loops allowed. A bijective function f:V(G)∪E(G)→{i}i=1p+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f:V(G)\cup E(G)\rightarrow \{i\}_{i=1}^{p+q}}$$\end{document} is an edge-magic labeling of G if the sum f(u)+f(uv)+f(v)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(u)+f(uv)+f(v)=k}$$\end{document} is independent of the choice of the edge uv. The constant k is called either the valence, the magic weight or the magic sum of the labeling f. If a graph admits an edge-magic labeling, then it is called an edge-magic graph. Furthermore, if the function f meets the extra condition that f(V(G))={i}i=1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(V(G))=\{i\}_{i=1}^{p}}$$\end{document} then f is called a super edge-magic labeling and G is called a super edge-magic graph. A digraph D admits a labeling, namely l, if its underlying graph, und(D) admits l. In this paper, we introduce a new construction of super edge-magic labelings which are related to the classical jump of the knight on the chess game. We also use super edge-magic labelings of digraphs together with a generalization of the Kronecker product to get edge-magic labelings of some families of graphs.
引用
收藏
页码:217 / 235
页数:18
相关论文
共 50 条
  • [21] Super edge-magic strength of some trees
    Swaminathan, V.
    Jeyanthi, P.
    UTILITAS MATHEMATICA, 2007, 72 : 199 - 210
  • [22] On the super edge-magic deficiency of a star forest
    Baig, A. Q.
    Baskoro, Edy Tri
    Semanicova-Fenovcikova, Andrea
    ARS COMBINATORIA, 2014, 115 : 3 - 12
  • [23] On the new families of (super) edge-magic graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    UTILITAS MATHEMATICA, 2007, 74 : 111 - 120
  • [24] On Super Edge-Magic Strength and Deficiency of Graphs
    Ngurah, A. A. G.
    Baskoro, E. T.
    Simanjuntak, R.
    Uttunggadewa, S.
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 144 - 154
  • [25] FURTHER RESULTS ON SUPER EDGE-MAGIC GRAPHS
    不详
    UTILITAS MATHEMATICA, 2019, 110 : 283 - 291
  • [26] Special super edge-magic sequences on (q
    Anjaneyulu, G. S. G. N.
    Vijayabarathi, A.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2013, 16 (06): : 349 - 365
  • [27] ON SUPER EDGE-MAGIC DEFICIENCY OF CERTAIN GRAPHS
    Chaudhary, M. U.
    Sarfraz, A. A.
    UTILITAS MATHEMATICA, 2020, 116 : 73 - 81
  • [28] On Super Edge-Magic Deficiency of Unicyclic Graphs
    Ahmad, Ali
    Muntaner-Batle, F. A.
    UTILITAS MATHEMATICA, 2015, 98 : 379 - 386
  • [29] On the super edge-magic deficiency of some graphs
    Krisnawati, Vira Hari
    Ngurah, Anak Agung Gede
    Hidayat, Noor
    Alghofari, Abdul Rouf
    HELIYON, 2020, 6 (11)
  • [30] STAR SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Kathiresan, K. M.
    Madha, S. Sabarimalai
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (01) : 143 - 156