共 50 条
The Jumping Knight and Other (Super) Edge-Magic Constructions
被引:0
|作者:
S. C. López
F. A. Muntaner-Batle
M. Rius-Font
机构:
[1] Universitat Politècnica de Catalunya,Dept. Matemàtica Apl. IV
[2] BarcelonaTech,Graph Theory and Applications Research Group, Faculty of Engineeringand Built Environment, School of Electrical Engineering and ComputerScience
[3] The University of Newcastle,undefined
来源:
关键词:
Primary 05C78;
(Super) edge-magic;
Jacobsthal sequence;
dual shuffle prime;
-product;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let G be a graph of order p and size q with loops allowed. A bijective function f:V(G)∪E(G)→{i}i=1p+q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f:V(G)\cup E(G)\rightarrow \{i\}_{i=1}^{p+q}}$$\end{document} is an edge-magic labeling of G if the sum f(u)+f(uv)+f(v)=k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f(u)+f(uv)+f(v)=k}$$\end{document} is independent of the choice of the edge uv. The constant k is called either the valence, the magic weight or the magic sum of the labeling f. If a graph admits an edge-magic labeling, then it is called an edge-magic graph. Furthermore, if the function f meets the extra condition that f(V(G))={i}i=1p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f(V(G))=\{i\}_{i=1}^{p}}$$\end{document} then f is called a super edge-magic labeling and G is called a super edge-magic graph. A digraph D admits a labeling, namely l, if its underlying graph, und(D) admits l. In this paper, we introduce a new construction of super edge-magic labelings which are related to the classical jump of the knight on the chess game. We also use super edge-magic labelings of digraphs together with a generalization of the Kronecker product to get edge-magic labelings of some families of graphs.
引用
收藏
页码:217 / 235
页数:18
相关论文