The Jumping Knight and Other (Super) Edge-Magic Constructions

被引:0
|
作者
S. C. López
F. A. Muntaner-Batle
M. Rius-Font
机构
[1] Universitat Politècnica de Catalunya,Dept. Matemàtica Apl. IV
[2] BarcelonaTech,Graph Theory and Applications Research Group, Faculty of Engineeringand Built Environment, School of Electrical Engineering and ComputerScience
[3] The University of Newcastle,undefined
来源
关键词
Primary 05C78; (Super) edge-magic; Jacobsthal sequence; dual shuffle prime; -product;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph of order p and size q with loops allowed. A bijective function f:V(G)∪E(G)→{i}i=1p+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f:V(G)\cup E(G)\rightarrow \{i\}_{i=1}^{p+q}}$$\end{document} is an edge-magic labeling of G if the sum f(u)+f(uv)+f(v)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(u)+f(uv)+f(v)=k}$$\end{document} is independent of the choice of the edge uv. The constant k is called either the valence, the magic weight or the magic sum of the labeling f. If a graph admits an edge-magic labeling, then it is called an edge-magic graph. Furthermore, if the function f meets the extra condition that f(V(G))={i}i=1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(V(G))=\{i\}_{i=1}^{p}}$$\end{document} then f is called a super edge-magic labeling and G is called a super edge-magic graph. A digraph D admits a labeling, namely l, if its underlying graph, und(D) admits l. In this paper, we introduce a new construction of super edge-magic labelings which are related to the classical jump of the knight on the chess game. We also use super edge-magic labelings of digraphs together with a generalization of the Kronecker product to get edge-magic labelings of some families of graphs.
引用
收藏
页码:217 / 235
页数:18
相关论文
共 50 条
  • [31] ON THE SEQUENTIAL NUMBER AND SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Figueroa-Centeno, R. M.
    Ichishima, R.
    ARS COMBINATORIA, 2016, 129 : 157 - 163
  • [32] On super edge-magic deficiency of certain Toeplitz graphs
    Ahmad, Ali
    Nadeem, Muhammad Faisal
    Gupta, Ashok
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 513 - 519
  • [33] Super edge-magic total labeling of combination graphs
    Li, Jingwen
    Wang, Bimei
    Gu, Yanbo
    Shao, Shuhong
    Engineering Letters, 2020, 28 (02): : 412 - 419
  • [34] On super edge-magic total labeling of banana trees
    Hussain, M.
    Baskoro, E. T.
    Slamin
    UTILITAS MATHEMATICA, 2009, 79 : 243 - 251
  • [35] On super edge-magic total labeling on subdivision of trees
    Javaid, M.
    Hussain, M.
    Ali, K.
    Shaker, H.
    UTILITAS MATHEMATICA, 2012, 89 : 169 - 177
  • [36] Super Edge-magic Total Labeling of Combination Graphs
    Li, Jingwen
    Wang, Bimei
    Gu, Yanbo
    Shao, Shuhong
    ENGINEERING LETTERS, 2020, 28 (02) : 412 - 419
  • [37] FURTHER RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Hegde, S. M.
    Shetty, Sudhakar
    Shankaran, P.
    ARS COMBINATORIA, 2011, 99 : 487 - 502
  • [38] SOME RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Imran, M.
    Baig, A. Q.
    Fenovcikova, A. S.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (02): : 237 - 249
  • [39] Super edge-magic labeling of accordion and bracelet graphs
    Baig, A. Q.
    Afzal, Hafiz U.
    Imran, M.
    Bashir, M. S.
    Qureshi, R. J.
    UTILITAS MATHEMATICA, 2017, 102 : 283 - 297
  • [40] Reverse super edge-magic strength of banana trees
    Basha, Shaik Sharief
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2018, 9 (05) : 515 - 523