Solid Extensions of the Cesàro Operator on ℓp and c0

被引:0
|
作者
Guillermo P. Curbera
Werner J. Ricker
机构
[1] Universidad de Sevilla,Facultad de Matemáticas
[2] Katholische Universität Eichstätt-Ingolstadt,Math.
来源
Integral Equations and Operator Theory | 2014年 / 80卷
关键词
Primary 47B37; 47A10; Secondary 46B45; 46B42; Cesàro operator; optimal extension; solid core; convolution operator; multiplier; spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study the largest Banach lattice (for the coordinate-wise order) which is a solid subspace of CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^\mathbb{N}}$$\end{document} and to which the classical Cesàro operator C:ℓp→ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon\ell^p \to \ell^p}$$\end{document} (a positive operator) can be continuously extended while still maintaining its values in ℓp. Properties of this optimal Banach lattice [C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} are presented. In addition, all continuous convolution operators of [C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} into itself are identified and the spectrum of C:[C,ℓp]s→[C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon[\mathcal{C}, \ell^p]_s \to[\mathcal{C}, \ell^p]_s}$$\end{document} is determined. A similar investigation is undertaken for the Cesàro operator C:c0→c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon c_0\to c_0}$$\end{document}.
引用
收藏
页码:61 / 77
页数:16
相关论文
共 50 条
  • [41] On the continuous Cesàro operator in certain function spaces
    Angela A. Albanese
    José Bonet
    Werner J. Ricker
    Positivity, 2015, 19 : 659 - 679
  • [43] A note on operator Banach spaces containing a complemented copy of c0
    Paneque F.
    Piñeiro C.
    Archiv der Mathematik, 2000, 75 (5) : 370 - 375
  • [44] A note on operator Banach spaces containing a complemented copy of c0
    Paneque, E
    Pineiro, C
    ARCHIV DER MATHEMATIK, 2000, 75 (05) : 370 - 375
  • [45] A Characteristic of c0(X)-evaluation Uniform Convergence of Operator Series
    葛琦
    崔成日
    延边大学学报(自然科学版), 2007, (02) : 81 - 82
  • [46] The free Banach lattices generated by p and c0
    Aviles, Antonio
    Tradacete, Pedro
    Villanueva, Ignacio
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (02): : 353 - 364
  • [47] The exclusive reaction p(p)over-tilde→χc0(13 P0)→π0π0→γγγγ
    Rumerio, P
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 115 : 179 - 182
  • [48] The Banach spaces l∞(c0) and c0(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 461 - 463
  • [49] On spaces admitting no ℓp or c0 spreading model
    Spiros A. Argyros
    Kevin Beanland
    Positivity, 2013, 17 : 265 - 282
  • [50] Measurements of the branching fractions of Ξc0 → ΛKS0, Ξc0 → Σ0KS0, and Ξc0 → Σ+K- decays at Belle
    Li, Y.
    Cui, J. X.
    Jia, S.
    Shen, C. P.
    Adachi, I.
    Ahn, J. K.
    Aihara, H.
    Al Said, S.
    Asner, D. M.
    Atmacan, H.
    Aushev, T.
    Ayad, R.
    Babu, V.
    Bahinipati, S.
    Behera, P.
    Belous, K.
    Bennett, J.
    Bessner, M.
    Bhardwaj, V.
    Bhuyan, B.
    Bilka, T.
    Bobrov, A.
    Bodrov, D.
    Bonvicini, G.
    Borah, J.
    Bozek, A.
    Bracko, M.
    Branchini, P.
    Browder, T. E.
    Budano, A.
    Campajola, M.
    Cervenkov, D.
    Chang, M. -C.
    Chang, P.
    Chen, A.
    Cheon, B. G.
    Chilikin, K.
    Cho, H. E.
    Cho, K.
    Cho, S. -J.
    Choi, S. -K.
    Choi, Y.
    Choudhury, S.
    Cinabro, D.
    Cunliffe, S.
    Das, S.
    De Nardo, G.
    De Pietro, G.
    Dhamija, R.
    Di Capua, F.
    PHYSICAL REVIEW D, 2022, 105 (01)