共 50 条
Solid Extensions of the Cesàro Operator on ℓp and c0
被引:0
|作者:
Guillermo P. Curbera
Werner J. Ricker
机构:
[1] Universidad de Sevilla,Facultad de Matemáticas
[2] Katholische Universität Eichstätt-Ingolstadt,Math.
来源:
Integral Equations and Operator Theory
|
2014年
/
80卷
关键词:
Primary 47B37;
47A10;
Secondary 46B45;
46B42;
Cesàro operator;
optimal extension;
solid core;
convolution operator;
multiplier;
spectrum;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce and study the largest Banach lattice (for the coordinate-wise order) which is a solid subspace of CN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{C}^\mathbb{N}}$$\end{document} and to which the classical Cesàro operator C:ℓp→ℓp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{C}\colon\ell^p \to \ell^p}$$\end{document} (a positive operator) can be continuously extended while still maintaining its values in ℓp. Properties of this optimal Banach lattice [C,ℓp]s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} are presented. In addition, all continuous convolution operators of [C,ℓp]s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} into itself are identified and the spectrum of C:[C,ℓp]s→[C,ℓp]s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{C}\colon[\mathcal{C}, \ell^p]_s \to[\mathcal{C}, \ell^p]_s}$$\end{document} is determined. A similar investigation is undertaken for the Cesàro operator C:c0→c0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{C}\colon c_0\to c_0}$$\end{document}.
引用
收藏
页码:61 / 77
页数:16
相关论文