Solid Extensions of the Cesàro Operator on ℓp and c0

被引:0
|
作者
Guillermo P. Curbera
Werner J. Ricker
机构
[1] Universidad de Sevilla,Facultad de Matemáticas
[2] Katholische Universität Eichstätt-Ingolstadt,Math.
来源
Integral Equations and Operator Theory | 2014年 / 80卷
关键词
Primary 47B37; 47A10; Secondary 46B45; 46B42; Cesàro operator; optimal extension; solid core; convolution operator; multiplier; spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study the largest Banach lattice (for the coordinate-wise order) which is a solid subspace of CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^\mathbb{N}}$$\end{document} and to which the classical Cesàro operator C:ℓp→ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon\ell^p \to \ell^p}$$\end{document} (a positive operator) can be continuously extended while still maintaining its values in ℓp. Properties of this optimal Banach lattice [C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} are presented. In addition, all continuous convolution operators of [C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} into itself are identified and the spectrum of C:[C,ℓp]s→[C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon[\mathcal{C}, \ell^p]_s \to[\mathcal{C}, \ell^p]_s}$$\end{document} is determined. A similar investigation is undertaken for the Cesàro operator C:c0→c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon c_0\to c_0}$$\end{document}.
引用
收藏
页码:61 / 77
页数:16
相关论文
共 50 条
  • [21] COPIES OF c0 AND l∞ INTO A REGULAR OPERATOR SPACE
    Li, Yongjin
    Ji, Donghai
    Bu, Qingying
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (01): : 207 - 215
  • [22] 关于p-Cesàro序列空间Xp(0
    王晶昕
    辽宁师范大学学报(自然科学版), 1993, (02) : 104 - 107+124
  • [24] On multiplicative perturbations of C0 -groups and C0-cosine operator functions
    C. Palencia
    S. Piskarev
    Semigroup Forum, 2001, 63 : 127 - 152
  • [25] Boundedness of the Cesàro Operator in Hardy Spaces
    Akihiko Miyachi
    Journal of Fourier Analysis and Applications, 2004, 10 : 83 - 92
  • [26] Composition of the Cesàro Operator and Its Transpose
    Hadi Roopaei
    Mediterranean Journal of Mathematics, 2023, 20
  • [27] The dyadic Cesàro operator on R+
    Eisner T.
    Schipp F.
    Analysis Mathematica, 2000, 26 (4) : 263 - 274
  • [28] Hadronic molecules ηcηc and χc0χc0
    Agaev, S. S.
    Azizi, K.
    Barsbay, B.
    Sundu, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10):
  • [29] Factorization of Cesàro operator and related inequalities
    Hadi Roopaei
    Journal of Inequalities and Applications, 2021
  • [30] Generalized Cesáro operator on BMOA space
    Sunanda Naik
    The Journal of Analysis, 2021, 29 : 315 - 323