Solid Extensions of the Cesàro Operator on ℓp and c0

被引:0
|
作者
Guillermo P. Curbera
Werner J. Ricker
机构
[1] Universidad de Sevilla,Facultad de Matemáticas
[2] Katholische Universität Eichstätt-Ingolstadt,Math.
来源
Integral Equations and Operator Theory | 2014年 / 80卷
关键词
Primary 47B37; 47A10; Secondary 46B45; 46B42; Cesàro operator; optimal extension; solid core; convolution operator; multiplier; spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study the largest Banach lattice (for the coordinate-wise order) which is a solid subspace of CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^\mathbb{N}}$$\end{document} and to which the classical Cesàro operator C:ℓp→ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon\ell^p \to \ell^p}$$\end{document} (a positive operator) can be continuously extended while still maintaining its values in ℓp. Properties of this optimal Banach lattice [C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} are presented. In addition, all continuous convolution operators of [C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathcal{C}, \ell^p]_s}$$\end{document} into itself are identified and the spectrum of C:[C,ℓp]s→[C,ℓp]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon[\mathcal{C}, \ell^p]_s \to[\mathcal{C}, \ell^p]_s}$$\end{document} is determined. A similar investigation is undertaken for the Cesàro operator C:c0→c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}\colon c_0\to c_0}$$\end{document}.
引用
收藏
页码:61 / 77
页数:16
相关论文
共 50 条
  • [1] Solid Extensions of the CesA ro Operator on a"" p and c0
    Curbera, Guillermo P.
    Ricker, Werner J.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (01) : 61 - 77
  • [2] Extensions of c0
    William B. Johnson
    Positivity, 1997, 1 : 55 - 74
  • [3] Extensions of c0
    Johnson, WB
    POSITIVITY, 1997, 1 (01) : 55 - 74
  • [4] Spectrum of the Cesàro operator in ℓp
    Guillermo P. Curbera
    Werner J. Ricker
    Archiv der Mathematik, 2013, 100 : 267 - 271
  • [5] THE SPECTRUM OF THE CESARO OPERATOR ON C0(C0)
    OKUTOYI, J
    THORPE, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 123 - 129
  • [6] Mean ergodicity and spectrum of the CesA ro operator on weighted c0 spaces
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    POSITIVITY, 2016, 20 (04) : 761 - 803
  • [7] On the Matrix Classes (c0, c0) and (c0, c0; P) over Complete Ultrametric Fields
    Natarajan, P. N.
    FILOMAT, 2021, 35 (15) : 5263 - 5270
  • [8] A STUDY OF THE MATRIX CLASSES (c0, c) AND (c0, c; P)
    Natarajan, Pinnangudi Narayanasubramanian
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 961 - 968
  • [9] On orthogonal properties of immediate extensions of c0
    Kubzdela, Albert
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (1-2): : 76 - 86
  • [10] THE REDUCIBILITY OF THE POWER OF A C0(1)-OPERATOR
    Gu, Caixing
    JOURNAL OF OPERATOR THEORY, 2020, 84 (02) : 259 - 288