On the Matrix Classes (c0, c0) and (c0, c0; P) over Complete Ultrametric Fields

被引:0
|
作者
Natarajan, P. N. [1 ]
机构
[1] Old 2-3,New 3-3,Second Main Rd, Chennai 600028, Tamil Nadu, India
关键词
Ultrametric (or non-archimedean) field; Banach algebra; unconditional convergence; K-convex set; convolution product;
D O I
10.2298/FIL2115263N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Throughout this paper, K denotes a complete, non-trivially valued, ultrametric (or nonarchimedean) field. Sequences, infinite series and infinite matrices have entries in K. In this paper, we record some interesting properties about the matrix classes (c(0), c(0)) and (c(0), c(0); P).
引用
收藏
页码:5263 / 5270
页数:8
相关论文
共 50 条
  • [1] A STUDY OF THE MATRIX CLASSES (c0, c) AND (c0, c; P)
    Natarajan, Pinnangudi Narayanasubramanian
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 961 - 968
  • [2] Hadronic molecules ηcηc and χc0χc0
    Agaev, S. S.
    Azizi, K.
    Barsbay, B.
    Sundu, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10):
  • [3] Mass spectra and Regge trajectories of Λc+, Σc0, Ξc0 and Ωc0 baryons
    Shah, Zalak
    Thakkar, Kaushal
    Rai, Ajay Kumar
    Vinodkumar, P. C.
    CHINESE PHYSICS C, 2016, 40 (12)
  • [4] THE SPECTRUM OF THE CESARO OPERATOR ON C0(C0)
    OKUTOYI, J
    THORPE, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 123 - 129
  • [5] The Banach spaces l∞(c0) and c0(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 461 - 463
  • [6] Measurements of the branching fractions of Ξc0 → ΛKS0, Ξc0 → Σ0KS0, and Ξc0 → Σ+K- decays at Belle
    Li, Y.
    Cui, J. X.
    Jia, S.
    Shen, C. P.
    Adachi, I.
    Ahn, J. K.
    Aihara, H.
    Al Said, S.
    Asner, D. M.
    Atmacan, H.
    Aushev, T.
    Ayad, R.
    Babu, V.
    Bahinipati, S.
    Behera, P.
    Belous, K.
    Bennett, J.
    Bessner, M.
    Bhardwaj, V.
    Bhuyan, B.
    Bilka, T.
    Bobrov, A.
    Bodrov, D.
    Bonvicini, G.
    Borah, J.
    Bozek, A.
    Bracko, M.
    Branchini, P.
    Browder, T. E.
    Budano, A.
    Campajola, M.
    Cervenkov, D.
    Chang, M. -C.
    Chang, P.
    Chen, A.
    Cheon, B. G.
    Chilikin, K.
    Cho, H. E.
    Cho, K.
    Cho, S. -J.
    Choi, S. -K.
    Choi, Y.
    Choudhury, S.
    Cinabro, D.
    Cunliffe, S.
    Das, S.
    De Nardo, G.
    De Pietro, G.
    Dhamija, R.
    Di Capua, F.
    PHYSICAL REVIEW D, 2022, 105 (01)
  • [7] Predictions for Ξb- → π-(DS-) ΞC0 (2790) (ΞC0(2815) and Ξb- → (v)over-bar ll ΞC0(2790) (ΞC0(2815)
    Pavao, R. P.
    Liang, Wei-Hong
    Nieves, J.
    Oset, E.
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (04):
  • [8] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)
  • [9] COMPLEMENTATION OF C0
    CHAPMAN, WH
    RANDTKE, DJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A610 - A611
  • [10] Extensions of c0
    William B. Johnson
    Positivity, 1997, 1 : 55 - 74