On the Matrix Classes (c0, c0) and (c0, c0; P) over Complete Ultrametric Fields

被引:0
|
作者
Natarajan, P. N. [1 ]
机构
[1] Old 2-3,New 3-3,Second Main Rd, Chennai 600028, Tamil Nadu, India
关键词
Ultrametric (or non-archimedean) field; Banach algebra; unconditional convergence; K-convex set; convolution product;
D O I
10.2298/FIL2115263N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Throughout this paper, K denotes a complete, non-trivially valued, ultrametric (or nonarchimedean) field. Sequences, infinite series and infinite matrices have entries in K. In this paper, we record some interesting properties about the matrix classes (c(0), c(0)) and (c(0), c(0); P).
引用
收藏
页码:5263 / 5270
页数:8
相关论文
共 50 条
  • [21] Actions of S on C0(X) and ideals of C0(X) xα S
    Shourijeh, B. Tabatabaie
    Zebarjad, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A3): : 199 - 203
  • [22] Study of Ωc0 and Ωc*0 baryons at Belle
    Solovieva, E.
    Chistov, R.
    Adachi, I.
    Aihara, H.
    Arinstein, K.
    Aushev, T.
    Bakich, A. M.
    Balagura, V.
    Bitenc, U.
    Bondar, A.
    Bracko, M.
    Brodzicka, J.
    Browder, T. E.
    Chang, P.
    Chen, A.
    Cheon, B. G.
    Cho, I. -S.
    Choi, S. -K.
    Choi, Y.
    Dalseno, J.
    Danilov, M.
    Dash, M.
    Eidelman, S.
    Ha, H.
    Hayasaka, K.
    Hazumi, M.
    Heffernan, D.
    Hoshi, Y.
    Hou, W. -S.
    Hsiung, Y. B.
    Hyun, H. J.
    Inami, K.
    Ishikawa, A.
    Ishino, H.
    Itoh, R.
    Iwasaki, M.
    Iwasaki, Y.
    Kah, D. H.
    Kang, J. H.
    Katayama, N.
    Kawai, H.
    Kawasaki, T.
    Kichimi, H.
    Kim, H. J.
    Kim, H. O.
    Kim, Y. I.
    Kim, Y. J.
    Kinoshita, K.
    Korpar, S.
    Krizan, P.
    PHYSICS LETTERS B, 2009, 672 (01) : 1 - 5
  • [23] ON BANACH IDEALS SATISFYING c0(A(X, Y)) = A(X, c0(Y))
    Delgado, J. M.
    Pineiro, C.
    MATHEMATICA SCANDINAVICA, 2008, 103 (01) : 130 - 140
  • [24] Generic unfoldings with the same bifurcation diagram which are not (C0, C0)- equivalent
    Annabi, H.
    Annabi, M.L.
    Roussarie, R.
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (03): : 1419 - 1428
  • [25] CHARMEDBARYONS(C=+1)∧c+=udc,∑c++=uuc,∑c+=udc,∑c0=ddc,≡c+=usc,≡c0=dsc,Ωc0=ssc
    KAOlive
    KAgashe
    CAmsler
    MAntonelli
    JFArguin
    DMAsner
    HBaer
    HRBand
    RMBarnett
    TBasaglia
    CWBauer
    JJBeatty
    VIBelousov
    JBeringer
    GBernardi
    SBethke
    HBichsel
    OBiebe
    EBlucher
    SBlusk
    GBrooijmans
    OBuchmueller
    VBurkert
    MABychkov
    RNCahn
    MCarena
    ACeccucci
    ACerr
    DChakraborty
    MCChen
    RSChivukula
    KCopic
    GCowan
    ODahl
    GDAmbrosio
    TDamour
    Dde Florian
    Ade Gouvea
    TDeGrand
    Pde Jong
    GDissertor
    BADobrescu
    MDoser
    MDrees
    HKDreiner
    DAEdwards
    SEidelman
    JErler
    VVEzhela
    WFetscher
    Chinese Physics C, 2014, 38 (09) : 1514 - 1534+547
  • [26] Smooth functions on c0
    Hajek, P
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 104 (1) : 17 - 27
  • [27] ON COARSE EMBEDDINGS INTO C0(Γ)
    Hajek, Petr
    Schlumprecht, Thomas
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (01): : 211 - 222
  • [28] Production and decay of Ωc0
    Aubert, B.
    Bona, M.
    Boutigny, D.
    Karyotakis, Y.
    Lees, J. P.
    Poireau, V.
    Prudent, X.
    Tisserand, V.
    Zghiche, A.
    Garra Tico, J.
    Grauges, E.
    Lopez, L.
    Palano, A.
    Eigen, G.
    Ofte, I.
    Stugu, B.
    Sun, L.
    Abrams, G. S.
    Battaglia, M.
    Brown, D. N.
    Button-Shafer, J.
    Cahn, R. N.
    Groysman, Y.
    Jacobsen, R. G.
    Kadyk, J. A.
    Kerth, L. T.
    Kolomensky, Yu. G.
    Kukartsev, G.
    Pegna, D. Lopes
    Lynch, G.
    Mir, L. M.
    Orimoto, T. J.
    Pripstein, M.
    Roe, N. A.
    Ronan, M. T.
    Tackmann, K.
    Wenzel, W. A.
    Sanchez, P. del Amo
    Hawkes, C. M.
    Watson, A. T.
    Held, T.
    Koch, H.
    Lewandowski, B.
    Pelizaeus, M.
    Schroeder, T.
    Steinke, M.
    Cottingham, W. N.
    Walker, D.
    Asgeirsson, D. J.
    Cuhadar-Donszelmann, T.
    PHYSICAL REVIEW LETTERS, 2007, 99 (06)
  • [29] On complemented copies of c0 and ℓ∞
    G. Emmanuele
    Acta Mathematica Hungarica, 2014, 142 : 348 - 352
  • [30] CONVERGENCE OF C0 COMPLEXITY
    Cai, Zhijie
    Sun, Jie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (03): : 977 - 992