On the continuous Cesàro operator in certain function spaces

被引:0
|
作者
Angela A. Albanese
José Bonet
Werner J. Ricker
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “E. De Giorgi”
[2] Universitat Politécnica de Valéncia,Instituto Universitario de Matemática Pura y Aplicada IUMPA
[3] Katholische Universität Eichstätt-Ingolstadt,Math.
来源
Positivity | 2015年 / 19卷
关键词
Cesàro operator; Continuous function spaces; -spaces; (Uniformly) mean ergodic operator; Hypercyclic operator; Supercyclic operator; Primary 47A10; 47A16; 47A35; Secondary 46A04; 47B34; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Various properties of the (continuous) Cesàro operator C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {C}$$\end{document}, acting on Banach and Fréchet spaces of continuous functions and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spaces, are investigated. For instance, the spectrum and point spectrum of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {C}$$\end{document} are completely determined and a study of certain dynamics of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {C}$$\end{document} is undertaken (eg. hyper- and supercyclicity, chaotic behaviour). In addition, the mean (and uniform mean) ergodic nature of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {C}$$\end{document} acting in the various spaces is identified.
引用
收藏
页码:659 / 679
页数:20
相关论文
共 50 条
  • [1] On the continuous CesA ro operator in certain function spaces
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    POSITIVITY, 2015, 19 (03) : 659 - 679
  • [2] Pointwise convergence of Cesàro and Riesz means on certain function spaces
    Sato S.
    Acta Scientiarum Mathematicarum, 2014, 80 (1-2): : 129 - 139
  • [3] Boundedness of the Cesàro Operator in Hardy Spaces
    Akihiko Miyachi
    Journal of Fourier Analysis and Applications, 2004, 10 : 83 - 92
  • [4] Geometry of Cesàro function spaces
    S. V. Astashkin
    L. Maligranda
    Functional Analysis and Its Applications, 2011, 45 : 64 - 68
  • [5] The Cesàro operator on Korenblum type spaces of analytic functions
    Angela A. Albanese
    José Bonet
    Werner J. Ricker
    Collectanea Mathematica, 2018, 69 : 263 - 281
  • [6] The Cesàro Operator and Unconditional Taylor Series in Hardy Spaces
    Guillermo P. Curbera
    Werner J. Ricker
    Integral Equations and Operator Theory, 2015, 83 : 179 - 195
  • [7] The Cesàro Operator in Growth Banach Spaces of Analytic Functions
    Angela A. Albanese
    José Bonet
    Werner J. Ricker
    Integral Equations and Operator Theory, 2016, 86 : 97 - 112
  • [8] The Cesàro operator on smooth sequence spaces of finite type
    Ersin Kızgut
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1747 - 1763
  • [9] On Interpolation of Cesàro Function Spaces with Polynomial Weight
    D. V. Prokhorov
    Siberian Mathematical Journal, 2025, 66 (2) : 315 - 325
  • [10] Order spectrum of the Cesàro operator in Banach lattice sequence spaces
    José Bonet
    Werner J. Ricker
    Positivity, 2020, 24 : 593 - 603