On a ternary Diophantine inequality over primes

被引:0
|
作者
Yuhui Liu
机构
[1] Jiangnan University,School of Science
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Diophantine inequality; Prime; Exponential sum; Exponential pair; 11P55; 11J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let 1<c<21097,c≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< c < \frac{210}{97}, c \ne 2$$\end{document}. In this paper, it is proved that for every sufficiently large real number N, for almost all real R∈(N,2N]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\in (N, 2N]$$\end{document}, the Diophantine inequality |p1c+p2c+p3c-R|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c - R| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. Moreover, we prove that the Diophantine inequality |p1c+p2c+p3c+p4c+p5c+p6c-N|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c + p_4^c + p_5^c + p_6^c - N| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document}. This result constitutes a refinement upon that of Cai (Int J Number Theory 14:2257–2268, 2018).
引用
收藏
页码:1287 / 1306
页数:19
相关论文
共 50 条
  • [31] Diophantine inequalities over Piatetski-Shapiro primes
    Jing Huang
    Wenguang Zhai
    Deyu Zhang
    Frontiers of Mathematics in China, 2021, 16 : 749 - 770
  • [32] Two Diophantine Inequalities over Primes with Fractional Power
    Huafeng Liu
    Frontiers of Mathematics, 2023, 18 : 1349 - 1362
  • [33] Two Diophantine Inequalities over Primes with Fractional Power
    Liu, Huafeng
    FRONTIERS OF MATHEMATICS, 2023, 18 (06): : 1349 - 1362
  • [34] A ternary Diophantine inequality with prime numbers of a special form
    Li, Jinjiang
    Xue, Fei
    Zhang, Min
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 14 - 31
  • [35] A ternary diophantine inequality with prime numbers of a special type
    Li Zhu
    Proceedings - Mathematical Sciences, 2020, 130
  • [36] A ternary Diophantine inequality with prime numbers of a special form
    Jinjiang Li
    Fei Xue
    Min Zhang
    Periodica Mathematica Hungarica, 2022, 85 : 14 - 31
  • [37] A ternary diophantine inequality with prime numbers of a special type
    Zhu, Li
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [38] On a ternary quadratic form over primes
    Fouvry, Etienne
    Shparlinski, Igor E.
    ACTA ARITHMETICA, 2011, 150 (03) : 285 - 314
  • [39] Diophantine equations in the primes
    Cook, Brian
    Magyar, Akos
    INVENTIONES MATHEMATICAE, 2014, 198 (03) : 701 - 737
  • [40] DIOPHANTINE APPROXIMATION BY PRIMES
    Matomaki, Kaisa
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 87 - 106