On a ternary Diophantine inequality over primes

被引:0
|
作者
Yuhui Liu
机构
[1] Jiangnan University,School of Science
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Diophantine inequality; Prime; Exponential sum; Exponential pair; 11P55; 11J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let 1<c<21097,c≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< c < \frac{210}{97}, c \ne 2$$\end{document}. In this paper, it is proved that for every sufficiently large real number N, for almost all real R∈(N,2N]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\in (N, 2N]$$\end{document}, the Diophantine inequality |p1c+p2c+p3c-R|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c - R| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. Moreover, we prove that the Diophantine inequality |p1c+p2c+p3c+p4c+p5c+p6c-N|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c + p_4^c + p_5^c + p_6^c - N| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document}. This result constitutes a refinement upon that of Cai (Int J Number Theory 14:2257–2268, 2018).
引用
收藏
页码:1287 / 1306
页数:19
相关论文
共 50 条
  • [21] On the exceptional set for Diophantine inequality with unlike powers of primes
    Liu, Huafeng
    Liu, Rui
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (01) : 34 - 52
  • [22] A ternary Diophantine inequality by primes with one of the form p = x2 + y2+1
    Dimitrov, Stoyan
    RAMANUJAN JOURNAL, 2022, 59 (02): : 571 - 607
  • [23] Diophantine approximation over primes with different powers
    Liu, Huafeng
    Yue, Jun
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 421
  • [24] A Tangent Inequality Over Primes
    S. I. Dimitrov
    Ukrainian Mathematical Journal, 2023, 75 : 1034 - 1051
  • [25] A TANGENT INEQUALITY OVER PRIMES
    Dimitrov, S. I.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (7) : 1034 - 1051
  • [26] DIOPHANTINE INEQUALITY WITH FOUR SQUARES AND ONE kTH POWER OF PRIMES
    Zhu, Li
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 985 - 1000
  • [27] A Diophantine inequality with four squares and one kth power of primes
    Mu, Quanwu
    Zhu, Minhui
    Li, Ping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (02) : 353 - 363
  • [28] A Diophantine inequality with four squares and one kth power of primes
    Quanwu Mu
    Minhui Zhu
    Ping Li
    Czechoslovak Mathematical Journal, 2019, 69 : 353 - 363
  • [29] Diophantine approximation over Piatetski-Shapiro primes
    Li, Taiyu
    Liu, Huafeng
    JOURNAL OF NUMBER THEORY, 2020, 211 : 184 - 198
  • [30] Diophantine inequalities over Piatetski-Shapiro primes
    Huang, Jing
    Zhai, Wenguang
    Zhang, Deyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 749 - 770