On a ternary Diophantine inequality over primes

被引:0
|
作者
Yuhui Liu
机构
[1] Jiangnan University,School of Science
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Diophantine inequality; Prime; Exponential sum; Exponential pair; 11P55; 11J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let 1<c<21097,c≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< c < \frac{210}{97}, c \ne 2$$\end{document}. In this paper, it is proved that for every sufficiently large real number N, for almost all real R∈(N,2N]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\in (N, 2N]$$\end{document}, the Diophantine inequality |p1c+p2c+p3c-R|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c - R| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. Moreover, we prove that the Diophantine inequality |p1c+p2c+p3c+p4c+p5c+p6c-N|<log-1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |p_1^c + p_2^c + p_3^c + p_4^c + p_5^c + p_6^c - N| < \log ^{-1}N \end{aligned}$$\end{document}is solvable in primes p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document}. This result constitutes a refinement upon that of Cai (Int J Number Theory 14:2257–2268, 2018).
引用
收藏
页码:1287 / 1306
页数:19
相关论文
共 50 条
  • [41] On a ternary diophantine inequality with prime numbers of a special type II
    Zhu, Li
    PERIODICA MATHEMATICA HUNGARICA, 2025, 90 (01) : 35 - 56
  • [42] Diophantine equations in the primes
    Brian Cook
    Ákos Magyar
    Inventiones mathematicae, 2014, 198 : 701 - 737
  • [43] DIOPHANTINE APPROXIMATION INVOLVING PRIMES
    LIU, MC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 289 : 199 - 208
  • [44] On a Diophantine equation involving primes
    Yingchun Cai
    The Ramanujan Journal, 2019, 50 : 151 - 162
  • [45] SIMULTANEOUS DIOPHANTINE APPROXIMATION WITH PRIMES
    HARMAN, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 : 405 - 413
  • [46] QUESTIONS ON PRIMES IN DIOPHANTINE GEOMETRY
    LANGMANN, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 408 : 181 - 201
  • [47] On a Diophantine equation involving primes
    Cai, Yingchun
    RAMANUJAN JOURNAL, 2019, 50 (01): : 151 - 162
  • [48] Diophantine Approximation by Special Primes
    Dimitrov, Stoyan
    PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
  • [49] DIOPHANTINE APPROXIMATION WITH GAUSSIAN PRIMES
    Harman, Glyn
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (04): : 1505 - 1519
  • [50] ON A DIOPHANTINE INEQUALITY
    KARATSUBA, AA
    ACTA ARITHMETICA, 1989, 53 (03) : 309 - 324