Two Diophantine Inequalities over Primes with Fractional Power

被引:0
|
作者
Liu, Huafeng [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 06期
基金
中国国家自然科学基金;
关键词
Diophantine inequality; exponential sum; prime; NUMBERS;
D O I
10.1007/s11464-021-0260-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < c < (256) /(119), c not equal 2 and N be a sufficiently large real number. In this paper, we first prove that the Diophantine inequality |p (c)(1)+p (c)(2)+<middle dot> <middle dot> <middle dot>+p (c)(6)-N| < log(-1) N is solvable in primes p1, p2, ... , p6. Moreover, we prove that for almost all R is an element of (N, 2N], the Diophantine inequality |p (c)(1)+ p (c)(2 )+ p (c)(3) - R| < log(-1) N is solvable in primes p1, p2, p3. These results constitute further improvements upon previous results.
引用
收藏
页码:1349 / 1362
页数:14
相关论文
共 50 条
  • [1] Two Diophantine Inequalities over Primes with Fractional Power
    Huafeng Liu
    Frontiers of Mathematics, 2023, 18 : 1349 - 1362
  • [2] On two Diophantine inequalities over primes
    Zhang, Min
    Li, Jinjiang
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (05): : 1393 - 1410
  • [3] A System of Two Diophantine Inequalities with Primes
    Han, Xue
    Liu, Huafeng
    Zhang, Deyu
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [4] Diophantine inequalities over Piatetski-Shapiro primes
    Huang, Jing
    Zhai, Wenguang
    Zhang, Deyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 749 - 770
  • [5] Diophantine inequalities over Piatetski-Shapiro primes
    Jing Huang
    Wenguang Zhai
    Deyu Zhang
    Frontiers of Mathematics in China, 2021, 16 : 749 - 770
  • [6] ON SOME DIOPHANTINE INEQUALITIES INVOLVING PRIMES
    BAKER, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1967, 228 : 166 - &
  • [7] SOME DIOPHANTINE EQUATIONS AND INEQUALITIES WITH PRIMES
    Baker, Roger
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2021, 64 (02) : 203 - 250
  • [8] On Some Nonlinear Diophantine Inequalities with Primes
    A. P. Naumenko
    Mathematical Notes, 2019, 105 : 935 - 940
  • [9] On Some Nonlinear Diophantine Inequalities with Primes
    Naumenko, A. P.
    MATHEMATICAL NOTES, 2019, 105 (5-6) : 935 - 940
  • [10] On a Diophantine inequality over primes
    Zhang, Min
    Li, Jinjiang
    JOURNAL OF NUMBER THEORY, 2019, 202 : 220 - 253