Two Diophantine Inequalities over Primes with Fractional Power

被引:0
|
作者
Liu, Huafeng [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 06期
基金
中国国家自然科学基金;
关键词
Diophantine inequality; exponential sum; prime; NUMBERS;
D O I
10.1007/s11464-021-0260-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < c < (256) /(119), c not equal 2 and N be a sufficiently large real number. In this paper, we first prove that the Diophantine inequality |p (c)(1)+p (c)(2)+<middle dot> <middle dot> <middle dot>+p (c)(6)-N| < log(-1) N is solvable in primes p1, p2, ... , p6. Moreover, we prove that for almost all R is an element of (N, 2N], the Diophantine inequality |p (c)(1)+ p (c)(2 )+ p (c)(3) - R| < log(-1) N is solvable in primes p1, p2, p3. These results constitute further improvements upon previous results.
引用
收藏
页码:1349 / 1362
页数:14
相关论文
共 50 条
  • [41] On a diophantine problem with one prime, two squares of primes and s powers of two
    Languasco, Alessandro
    Settimi, Valentina
    ACTA ARITHMETICA, 2012, 154 (04) : 385 - 412
  • [42] On a Diophantine Inequality with s Primes
    Yan, Xiaofei
    Zhang, Lu
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [43] DIOPHANTINE APPROXIMATION INVOLVING PRIMES
    LIU, MC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 289 : 199 - 208
  • [44] On a Diophantine equation involving primes
    Yingchun Cai
    The Ramanujan Journal, 2019, 50 : 151 - 162
  • [45] SIMULTANEOUS DIOPHANTINE APPROXIMATION WITH PRIMES
    HARMAN, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 : 405 - 413
  • [46] QUESTIONS ON PRIMES IN DIOPHANTINE GEOMETRY
    LANGMANN, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 408 : 181 - 201
  • [47] On a Diophantine equation involving primes
    Cai, Yingchun
    RAMANUJAN JOURNAL, 2019, 50 (01): : 151 - 162
  • [48] Diophantine Approximation by Special Primes
    Dimitrov, Stoyan
    PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
  • [49] DIOPHANTINE APPROXIMATION WITH GAUSSIAN PRIMES
    Harman, Glyn
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (04): : 1505 - 1519
  • [50] Elliptic Curves of Twin-Primes Over Gauss Field and Diophantine Equations
    邱德荣
    张贤科
    数学进展, 2000, (03) : 279 - 281