Two Diophantine Inequalities over Primes with Fractional Power

被引:0
|
作者
Liu, Huafeng [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 06期
基金
中国国家自然科学基金;
关键词
Diophantine inequality; exponential sum; prime; NUMBERS;
D O I
10.1007/s11464-021-0260-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < c < (256) /(119), c not equal 2 and N be a sufficiently large real number. In this paper, we first prove that the Diophantine inequality |p (c)(1)+p (c)(2)+<middle dot> <middle dot> <middle dot>+p (c)(6)-N| < log(-1) N is solvable in primes p1, p2, ... , p6. Moreover, we prove that for almost all R is an element of (N, 2N], the Diophantine inequality |p (c)(1)+ p (c)(2 )+ p (c)(3) - R| < log(-1) N is solvable in primes p1, p2, p3. These results constitute further improvements upon previous results.
引用
收藏
页码:1349 / 1362
页数:14
相关论文
共 50 条