Diophantine equations in the primes

被引:20
|
作者
Cook, Brian [1 ]
Magyar, Akos [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LINEAR-EQUATIONS; INTEGER POINTS; DENSITY;
D O I
10.1007/s00222-014-0508-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p = (p(1), ... , p(r)) be a system of r polynomials with integer coefficients of degree d in n variables x = (x(1), ... , x(n)). For a given r-tuple of integers, say s, a general local to global type statement is shown via classical Hardy-Littlewood type methods which provides sufficient conditions for the solubility of p(x) = s under the condition that each of the x(i)'s is prime.
引用
收藏
页码:701 / 737
页数:37
相关论文
共 50 条