Quantum field theory;
Homological algebra;
Algebraic geometry;
81T30;
18G70;
18G80;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study hybrid models arising as homological projective duals (HPD) of certain projective embeddings f:X→P(V)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:X\rightarrow {\mathbb {P}}(V)$$\end{document} of Fano manifolds X. More precisely, the category of B-branes of such hybrid models corresponds to the HPD category of the embedding f. B-branes on these hybrid models can be seen as global matrix factorizations over some compact space B or, equivalently, as the derived category of the sheaf of A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {A}}$$\end{document}-modules on B, where A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {A}}$$\end{document} is a sheaf of A∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_{\infty }$$\end{document}-algebra. This latter interpretation corresponds to a noncommutative resolution of B. We compute explicitly the algebra A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {A}}$$\end{document} by several methods, for some specific class of hybrid models. If the target space of the hybrid model is a global orbifold, A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {A}}$$\end{document} takes the form of a smash product of an A∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_{\infty }$$\end{document}-algebra with a finite group. However, this is not the case in general because the orbifold group can only be defined locally. One needs to treat the target space as an algebraic stack in such cases. We apply our results to the HPD of f corresponding to a Veronese embedding of projective space and the projective embedding of Fano complete intersections in Pn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {P}}^{n}$$\end{document}.
机构:
Fudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R China
Qin, X-S
Wang, Y-H
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Math, Shanghai Key Lab Financial Informat Technol, Shanghai 200433, Peoples R ChinaFudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R China
Wang, Y-H
Zhang, J. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USAFudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R China