Hybrid models for homological projective duals and noncommutative resolutions

被引:0
|
作者
Jirui Guo
Mauricio Romo
机构
[1] Tsinghua University,Yau Mathematical Sciences Center
来源
关键词
Quantum field theory; Homological algebra; Algebraic geometry; 81T30; 18G70; 18G80;
D O I
暂无
中图分类号
学科分类号
摘要
We study hybrid models arising as homological projective duals (HPD) of certain projective embeddings f:X→P(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow {\mathbb {P}}(V)$$\end{document} of Fano manifolds X. More precisely, the category of B-branes of such hybrid models corresponds to the HPD category of the embedding f. B-branes on these hybrid models can be seen as global matrix factorizations over some compact space B or, equivalently, as the derived category of the sheaf of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-modules on B, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a sheaf of A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra. This latter interpretation corresponds to a noncommutative resolution of B. We compute explicitly the algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} by several methods, for some specific class of hybrid models. If the target space of the hybrid model is a global orbifold, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} takes the form of a smash product of an A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra with a finite group. However, this is not the case in general because the orbifold group can only be defined locally. One needs to treat the target space as an algebraic stack in such cases. We apply our results to the HPD of f corresponding to a Veronese embedding of projective space and the projective embedding of Fano complete intersections in Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^{n}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Notes on homological projective duality
    Thomas, Richard P.
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 585 - 609
  • [22] HOMOLOGICAL PROJECTIVE DUALITY FOR QUADRICS
    Kuznetsov, Alexander
    Perry, Alexander
    JOURNAL OF ALGEBRAIC GEOMETRY, 2021, 30 (03) : 457 - 476
  • [23] Noncommutative resolutions using syzygies
    Dao, Hailong
    Iyama, Osamu
    Iyengar, Srikanth B.
    Takahashi, Ryo
    Wemyss, Michael
    Yoshino, Yuji
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (01) : 43 - 48
  • [24] Homological properties of noncommutative Iwasawa algebras
    Wei, Feng
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (1-2) : 15 - 20
  • [25] Noncommutative Homological Mirror Functor Introduction
    Cho, Cheol-Hyun
    Hong, Hansol
    Lau, Siu-Cheong
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 271 (1326) : 1 - +
  • [26] NONCOMMUTATIVE PROJECTIVE SCHEMES
    ARTIN, M
    ZHANG, JJ
    ADVANCES IN MATHEMATICS, 1994, 109 (02) : 228 - 287
  • [27] Landau-Ginzburg Models, Gerbes, and Kuznetsov's Homological Projective Duality
    Sharpe, Eric
    SUPERSTRINGS, GEOMETRY, TOPOLOGY, AND C(STAR)-ALGEBRAS, 2010, 81 : 237 - 249
  • [28] Homological Resolutions in Problems About Separating Cycles
    Ulvert, R. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (03) : 542 - 550
  • [29] Resolutions and homological dimensions of DG-modules
    Hiroyuki Minamoto
    Israel Journal of Mathematics, 2021, 245 : 409 - 454
  • [30] Projective duals to algebraic and tropical hypersurfaces
    Ilten, Nathan
    Len, Yoav
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (05) : 1234 - 1278