Hybrid models for homological projective duals and noncommutative resolutions

被引:0
|
作者
Jirui Guo
Mauricio Romo
机构
[1] Tsinghua University,Yau Mathematical Sciences Center
来源
关键词
Quantum field theory; Homological algebra; Algebraic geometry; 81T30; 18G70; 18G80;
D O I
暂无
中图分类号
学科分类号
摘要
We study hybrid models arising as homological projective duals (HPD) of certain projective embeddings f:X→P(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow {\mathbb {P}}(V)$$\end{document} of Fano manifolds X. More precisely, the category of B-branes of such hybrid models corresponds to the HPD category of the embedding f. B-branes on these hybrid models can be seen as global matrix factorizations over some compact space B or, equivalently, as the derived category of the sheaf of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-modules on B, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a sheaf of A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra. This latter interpretation corresponds to a noncommutative resolution of B. We compute explicitly the algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} by several methods, for some specific class of hybrid models. If the target space of the hybrid model is a global orbifold, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} takes the form of a smash product of an A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra with a finite group. However, this is not the case in general because the orbifold group can only be defined locally. One needs to treat the target space as an algebraic stack in such cases. We apply our results to the HPD of f corresponding to a Veronese embedding of projective space and the projective embedding of Fano complete intersections in Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^{n}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Projective homological classification of C*-algebras
    Helemskii, AY
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (03) : 977 - 996
  • [42] Noncommutative homological mirror symmetry of elliptic curves
    Lee, Sangwook
    KYOTO JOURNAL OF MATHEMATICS, 2021, 61 (03) : 723 - 743
  • [43] Projective resolutions associated to projections
    T. de Jong
    D. van Straten
    manuscripta mathematica, 2000, 101 : 415 - 427
  • [44] Constructing minimal projective resolutions
    Shi, Hongbo
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (06) : 1874 - 1881
  • [45] HOMOLOGICAL DIMENSIONS OVER NONCOMMUTATIVE SEMILOCAL RINGS
    XU, JZ
    CHENG, FC
    JOURNAL OF ALGEBRA, 1994, 169 (03) : 679 - 685
  • [46] Minimal projective resolutions for comodules
    López-Ramos, JA
    Nastasescu, C
    Torrecillas, B
    K-THEORY, 2004, 32 (04): : 357 - 364
  • [47] Projective resolutions associated to projections
    de Jong, T
    van Straten, D
    MANUSCRIPTA MATHEMATICA, 2000, 101 (04) : 415 - 427
  • [48] PROJECTIVE RESOLUTIONS OF FLAT MODULES
    SIMSON, D
    COLLOQUIUM MATHEMATICUM, 1974, 29 (02) : 209 - 218
  • [49] HOMOLOGICAL EQUIVALENCES OF MODULES AND THEIR PROJECTIVE INVARIANTS
    HOLLAND, D
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 43 : 396 - 411
  • [50] A GLSM View on Homological Projective Duality
    Chen, Zhuo
    Guo, Jirui
    Romo, Mauricio
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 394 (01) : 355 - 407