Hybrid models for homological projective duals and noncommutative resolutions

被引:0
|
作者
Jirui Guo
Mauricio Romo
机构
[1] Tsinghua University,Yau Mathematical Sciences Center
来源
关键词
Quantum field theory; Homological algebra; Algebraic geometry; 81T30; 18G70; 18G80;
D O I
暂无
中图分类号
学科分类号
摘要
We study hybrid models arising as homological projective duals (HPD) of certain projective embeddings f:X→P(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow {\mathbb {P}}(V)$$\end{document} of Fano manifolds X. More precisely, the category of B-branes of such hybrid models corresponds to the HPD category of the embedding f. B-branes on these hybrid models can be seen as global matrix factorizations over some compact space B or, equivalently, as the derived category of the sheaf of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-modules on B, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a sheaf of A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra. This latter interpretation corresponds to a noncommutative resolution of B. We compute explicitly the algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} by several methods, for some specific class of hybrid models. If the target space of the hybrid model is a global orbifold, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} takes the form of a smash product of an A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebra with a finite group. However, this is not the case in general because the orbifold group can only be defined locally. One needs to treat the target space as an algebraic stack in such cases. We apply our results to the HPD of f corresponding to a Veronese embedding of projective space and the projective embedding of Fano complete intersections in Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^{n}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Resolutions and homological dimensions of DG-modules
    Minamoto, Hiroyuki
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (01) : 409 - 454
  • [32] RESOLUTIONS, HOMOLOGICAL DIMENSIONS, AND EXTENSIONS OF HOOK REPRESENTATIONS
    MALIAKAS, M
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (08) : 2195 - 2216
  • [33] ON THE DUALS OF SMOOTH PROJECTIVE COMPLEX HYPERSURFACES
    Dimca, Alexandru
    Ilardi, Giovanna
    PUBLICACIONS MATEMATIQUES, 2024, 68 (02) : 431 - 438
  • [34] On functors preserving projective resolutions
    Santana, Ana Paula
    Yudin, Ivan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (01)
  • [35] Graph Representation of Projective Resolutions
    Shi, Hong Bo
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (03) : 555 - 566
  • [36] Homological Resolutions in Problems About Separating Cycles
    R. V. Ulvert
    Siberian Mathematical Journal, 2018, 59 : 542 - 550
  • [37] A GLSM View on Homological Projective Duality
    Zhuo Chen
    Jirui Guo
    Mauricio Romo
    Communications in Mathematical Physics, 2022, 394 : 355 - 407
  • [38] Homological projective duality for determinantal varieties
    Bernardara, Marcello
    Bolognesi, Michele
    Faenzi, Daniele
    ADVANCES IN MATHEMATICS, 2016, 296 : 181 - 209
  • [39] Graph representation of projective resolutions
    Hong Bo Shi
    Acta Mathematica Sinica, English Series, 2011, 27 : 555 - 566
  • [40] CONSTRUCTING PROJECTIVE-RESOLUTIONS
    FEUSTEL, CD
    GREEN, EL
    KIRKMAN, E
    KUZMANOVICH, J
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (06) : 1869 - 1887