Explicit minimal embedded resolutions of divisors on models of the projective line

被引:0
|
作者
Andrew Obus
Padmavathi Srinivasan
机构
[1] Baruch College,
[2] University of Georgia,undefined
来源
关键词
Mac Lane valaution; Embedded resolution; Regular model; Primary: 14B05; 14J17; Secondary: 13F30; 14H25;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a discretely valued field with ring of integers OK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_K$$\end{document} with perfect residue field. Let K(x) be the rational function field in one variable. Let POK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1_{\mathcal {O}_K}$$\end{document} be the standard smooth model of PK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1_K$$\end{document} with coordinate x. Let f(x)∈OK[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) \in \mathcal {O}_K[x]$$\end{document} be a squarefree polynomial with corresponding divisor of zeroes div0(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{div}\,}}_0(f)$$\end{document} on POK1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1_{\mathcal {O}_K}$$\end{document}. We give an explicit description of the minimal embedded resolution Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Y}$$\end{document} of the pair (POK1,div0(f))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {P}}^1_{\mathcal {O}_K}, {{\,\mathrm{div}\,}}_0(f))$$\end{document} by using Mac Lane’s theory to write down the discrete valuations on K(x) corresponding to the irreducible components of the special fiber of Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Y}$$\end{document}.
引用
收藏
相关论文
共 42 条